Design and Implementation of a Microprocessor Based Data Collection and Interpretation System with Onboard Graphical Interface

Download
2004
Göksügür, Gökhan
This thesis reports the design and implementation of a microprocessor based interface unit of a navigation system. The interface unit is composed of a TFT display screen for graphical interface, a Controller Circuit for system control, a keypad interface for external data entrance to the system and a power interface circuit to provide interface between the battery of the navigation system and the Controller Circuit. This thesis reports high speed design of the Controller Circuit and generation of system functions. Main functions of the interface unit are communicating with navigation computer and providing a graphical interface to the driver of the vehicle containing the navigation system. Communication and graphical data preparation functions are implemented through the use of a microprocessor. Driver function of TFT display is implemented through the use of a Field Programmable Gate Array, which is programmed using the Very High Speed IC Description Language (VHDL). Keywords: Navigation System, Interface Unit, Controller Circuit, Image Generation

Suggestions

Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Development of a pc numerical system for high voltage sphere gap control
Kasap, Onur; Hızal, Mirzahan; Department of Electrical and Electronics Engineering (2005)
In this thesis, a high precision motion and position control system has been developed and applied to a high voltage sphere gap control and measurement system. The system is able to support up to 3-axes position and motion control. The control system includes a microcontroller card, three DC servo motor driver cards and a data storage unit. To provide communication between computer and motion control system, the Universal Serial Bus (USB) port is used. The microcontroller card is equipped with an USB interf...
Design and systemc implementation of a crypto processor for AES and DES algorithms
Egemen, Tufan; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
This thesis study presents design and SystemC implementation of a Crypto Processor for Advanced Encryption Standard (AES), Data Encryption Standard (DES) and Triple DES (TDES) algorithms. All of the algorithms are implemented in single architecture instead of using separate architectures for each of the algorithm. There is an Instruction Set Architecture (ISA) implemented for this Crypto Processor and the encryption and decryption of algorithms can be performed by using the proper instructions in the ISA. A...
Implementation of a risc microcontroller using fpga
Gümüş, Raşit; Güran, Hasan; Department of Electrical and Electronics Engineering (2005)
In this thesis a microcontroller core is developed in an FPGA. Its instruction set is compatible with the microcontroller PIC16XX series by Microchip Technology. The microcontroller employs a RISC architecture with separate busses for instructions and data. Our goal in this research is to implement and evaluate the design in the FPGA. Increasing performance and gate capacity of recent FPGA devices permits complex logic systems to be implemented on a single programmable device. Such a growing complexity dema...
Design and FPGA implementation of hash processor
Şiltu, Çelebi Tuğba; Aşkar, Murat; Department of Electrical and Electronics Engineering (2007)
In this thesis, an FPGA based hash processor is designed and implemented using a hardware description language; VHDL. Hash functions are among the most important cryptographic primitives and used in the several fields of communication integrity and signature authentication. These functions are used to obtain a fixed-size fingerprint or hash value of an arbitrary long message. The hash functions SHA-1 and SHA2-256 are examined in order to find the common instructions to implement them using same hardware blo...
Citation Formats
G. Göksügür, “Design and Implementation of a Microprocessor Based Data Collection and Interpretation System with Onboard Graphical Interface,” M.S. - Master of Science, Middle East Technical University, 2004.