Development of a GIS software for evaluating network relibility of lifelines under seismic hazard

Oduncuoğlu, Lütfi
Lifelines are vital networks and it is important that those networks are still be functional after major natural disasters such as earthquakes. The goal of this study is to develop a GIS software for evaluating network reliability of lifelines under seismic hazard. In this study, GIS, statistics and facility management is used together and a GIS software module, which constructs GIS based reliability maps of lifeline networks, is developed by using geoTools. Developed GIS module imports seismic hazard and lifeline network layers in GIS formats using geoTools libraries and after creating a gridded network structure it uses a network reliability algorithm, initially developed by Yoo and Deo (1988), to calculate the upper and lower bounds of lifeline network reliability under seismic hazard. Also it can show the results in graphical form and save as shape file format. In order to validate the developed application, results are compared with a former case study of Selcuk (2000) and the results are satisfactorily close to previous study. As a result of this study, an easy to use, GIS based software module that creates GIS based reliability map of lifelines under seismic hazard was developed.


A GIS-based software for lifeline reliability analysis under seismic hazard
Kestel, Sevtap Ayşe; ODUNCUOĞLU, Lütfi (2012-05-01)
Lifelines are vital networks, and it is important that those networks are still functional after major natural disasters such as earthquakes. Assessing reliability of lifelines requires spatial analysis of lifelines with respect to a given earthquake hazard map. In this paper, a GIS-based software for the spatial assessment of lifeline reliability which is developed by using GeoTools environment is presented. The developed GIS-based software imports seismic hazard and lifeline network layers and then create...
Development of geotechnical microzonation model for Yenisehir (Bursa, Turkey) located at a seismically active region
Kolat, Çağıl; Süzen, Mehmet Lütfi (2012-02-24)
Earthquake hazard zonation for urban areas, mostly referred to as seismic microzonation, is the first and important step towards a seismic risk analysis and mitigation strategy in populated regions. Proper understanding of the local subsurface ground conditions is essential for a realistic assessment. Turkey is one of the earthquake prone countries in the World and the lessons particularly drawn from the devastating 17 August 1999 and 12 November 1999 earthquakes of Turkey revealed the importance of microzo...
Development of rocking-column (ROC) seismic base isolation system for buildings
Javed , Nasir; Türer, Ahmet; Department of Civil Engineering (2020-10-21)
Earthquake mitigation of buildings has been a long-standing matter of research. Researchers have proposed many systems that can be categorized as passive control, active control, and hybrid systems. Seismic base isolation, usually linked to the passive control category, is a well-known technique to isolate a structure from harmful effects of earthquakes. In this research, a new seismic isolation system, different from the conventional seismic base isolation systems, has been proposed and named as Rocking-Co...
Operation of the water control structures
Bozkurt, Okan Çağrı; Merzi, Nuri; Akyürek, Sevda Zuhal; Department of Civil Engineering (2013)
Floods are one of the most important natural disasters regarding damages caused by them. Major reasons of huge damages of floods are unplanned urbanization, narrowing of river beds and incorrect operation of water control structures. Geographic Information Systems (GIS) can provide important tools to be used in flood modeling studies. In this study, Lake Mogan, Lake Eymir and İncesu Detention Pond subbasins are studied for flooding events within GIS framework. These subbasins are important catchment areas o...
Assessment of inland tsunami parameters and their effects on morphology /
Pamuk, Aykut; Yalçıner, Ahmet Cevdet; Department of Civil Engineering (2014)
Recent tsunami events clearly showed the potential of massive destruction on buildings, infrastructure, coastal protection structures and also morphological changes by tsunami waves. This thesis covers investigation of tsunami motion at inundation zone considering different factors (smoothed ground without buildings, or with buildings), and related changes of inland tsunami parameters and their effects on morphology. For the applications, the simulations have been performed using different topographic condi...
Citation Formats
L. Oduncuoğlu, “Development of a GIS software for evaluating network relibility of lifelines under seismic hazard,” M.S. - Master of Science, Middle East Technical University, 2010.