Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Catalytic ozonation of industial textile wastewaters in a three phase fluidized bed reactor
Download
index.pdf
Date
2010
Author
Polat, Didem
Metadata
Show full item record
Item Usage Stats
243
views
98
downloads
Cite This
Textile wastewaters are highly colored and non-biodegradable having variable compositions of colored dyes, surfactants and toxic chemicals. Recently, ozonation is considered as an effective method that can be used in the treatment of industrial wastewaters; catalytic ozonation being one of the advanced oxidation processes (AOPs), is applied in order to reduce the ozone consumption and to increase the chemical oxygen demand (COD) and total organic carbon (TOC) removals. In this study, catalytic ozonation of industrial textile wastewater (ITWW) obtained from AKSA A.Ş. (Yalova, İstanbul) textile plant has been examined in a three phase fluidized bed reactor at different conditions. The effects of inlet chemical oxygen demand concentration (CODin), pH, different catalyst types [perflorooctyl alumina (PFOA) and alumina] and catalyst dosage on ozonation process were determined. Moreover, the changes in the organic removal efficiencies with gas to liquid flow rate ratio were investigated. The dispersion coefficients (DL) and volumetric ozone-water mass transfer coefficients (kLa) were estimated at various gas and liquid flow rates in order to observe the effect of liquid mixing in the reactor on ozonation process. It was observed that increasing both gas and liquid flow rates by keeping their ratio constant provided higher organic removal efficiencies due to the higher mixing in the liquid phase. The dyes present in ITWW sample were known to be Basic Blue 41 (BB 41), Basic Red 18.1 (BR 18.1) and Basic Yellow 28 (BY 28). The “absorbance vs. concentration” calibration correlations were developed to estimate the amounts of these colored dyes in the ITWW sample. This provided the opportunity to examine the degradation of each dye in this wastewater separately. While PFOA catalyst was found to increase the removal efficiency of BY 28 at an acidic pH of 4, alumina yielded highest color removals for BB 41 and BR 18.1 at a pH of 12. The highest TOC and COD reductions being 24.4% and 29.5%, respectively, were achieved in the catalytic ozonation of the ITWW using alumina as the catalyst at a pH of 12 and at a gas to liquid flow rate ratio of 1.36 (QG = 340 L/h, QL = 250 L/h). At the same conditions, also the highest overall color removal in terms of Pt-Co color unit, namely 86.49%, were obtained due to the lower BY 28 concentration in the WW sample than those of the BB 41 and BR 18.1. In addition, the oxidation of BB 41, BR 18.1 and BY 28 dyes were investigated in a semi-batch reactor by sole and catalytic ozonations with alumina and PFOA catalyst particles. The sole and catalytic ozonation reactions followed a pseudo-first order kinetics with respect to dye concentration. The highest TOC and COD removals being 58.3% and 62.9%, respectively, were obtained at pH of 10 for BB 41 and 55.2% and 58.8%, respectively, for BR 18.1 with alumina catalyst. On the other hand, for BY 28 PFOA catalyst yielded highest TOC and COD reductions being 61.3% and 66.9%, respectively, at pH of 4.
Subject Keywords
Chemical engineering.
URI
http://etd.lib.metu.edu.tr/upload/12612861/index.pdf
https://hdl.handle.net/11511/20288
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Catalytic Ozonation of Dye Solutions in a Semi-Batch Reactor
Pirgalıoğlu, Saltuk; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2008)
Treatment of textile wastewaters containing dye materials using the conventional methods based on biological treatment is not possible. In order to overcome this problem, ozonation based on the oxidation of organic pollutants with ozone gas dissolved in aqueous phase have been studied widely. Catalytic ozonation and advanced oxidation processes (AOP) are also used in order to increase the efficiency of sole ozonation In this work, catalytic ozonation processes in the presence of Copper Sulfide (CuS) powder ...
Catalytic ozonation of an industrial textile wastewater in a heterogeneous continuous reactor
Polat, Didem; Balci, Irem; Ozbelge, Tulay A. (2015-09-01)
Textile wastewaters (WWs) are highly colored and non-biodegradable having variable compositions of colored dyes, surfactants and toxic chemicals. Discharge of these WWs to the environment is very detrimental for ecosystems, therefore new methods have been investigated in order to meet the quality criteria of water and the discharge standards of the partly treated WWs. Recently, catalytic ozonation being one of the advanced oxidation processes (AOPs), is considered as an effective method that can be used in ...
Dynamic Behavior of continuous flow stirred slurry reactors in boric acid production
Yücel Çakal, Gaye Ö; Eroğlu, İnci; Department of Chemical Engineering (2004)
One of the most important boron minerals, colemanite is reacted with sulfuric acid to produce boric acid. During this reaction, gypsum (calcium sulfate dihydrate) is formed as a byproduct. In this study, the boric acid production was handled both in a batch and four continuously stirred slurry reactors (4-CFSSR̕s) in series system. In this reaction system there are at least three phases, one liquid and two solid phases (colemanite and gypsum). In a batch reactor all the phases have the same operating time (...
Study of adsorption characteristics of long chain alkyl amine and petroleum sulfonate on silicates by electrokinetic potential, microflotation, FTIR, and AFM analyses
ÖZÜN, Savaş; Atalay, M. Umit; Demirci, Şahinde (Informa UK Limited, 2019-05-19)
The long-chain alkyl amines and petroleum sulfonates are mostly used to remove unwanted minerals from feldspar ores in acidic pHs. In this study, their adsorption characteristics on pure albite and quartz were investigated by electrokinetic potential measurements, microflotation tests, Fourier transform infrared spectroscopy, and atomic force microscopy studies. According to the results, amine had strong influence on zeta potentials of both albite and quartz turning them positive and resulting over 90% flot...
Catalytic ozonation of synthetic wastewaters containing three different dyes in a fluidized bed reactor
Balcı, Ayşe İrem; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2011)
Environmental regulations have imposed limitations on a wide variety of organic and inorganic pollutants in industrial textile wastewaters. There are several degradation methods used in literature studies. Among these methods ozonation is one of the most considered way to degrade refractory chemicals in textile wastewaters. In recent years, catalytic ozonation as being one of the advanced oxidation processes (AOPs), is applied to reduce the ozone consumption and to increase the Chemical Oxygen Demand (COD) ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
D. Polat, “Catalytic ozonation of industial textile wastewaters in a three phase fluidized bed reactor,” M.S. - Master of Science, Middle East Technical University, 2010.