Catalytic Ozonation of Dye Solutions in a Semi-Batch Reactor

Pirgalıoğlu, Saltuk
Treatment of textile wastewaters containing dye materials using the conventional methods based on biological treatment is not possible. In order to overcome this problem, ozonation based on the oxidation of organic pollutants with ozone gas dissolved in aqueous phase have been studied widely. Catalytic ozonation and advanced oxidation processes (AOP) are also used in order to increase the efficiency of sole ozonation In this work, catalytic ozonation processes in the presence of Copper Sulfide (CuS) powder and a synthesized catalyst by the impregnation of iron on alumina (Fe/Al2O3) were studied separately in the treatment of dye solutions, namely Remazol Brilliant Blue-R (RBBR) and Reactive Black-5 (RB-5). Besides catalytic ozonation runs, ozonation parameters and ozonation mechanism were also studied and a model was developed for the semi-batch ozonation. Both catalysts increased the oxidation of side products measured by the decrease in the amount of total organic carbon (TOC) in the treated dye solutions. Dye removal rates were also enhanced in the treatment of RB-5 dye solutions while no significant effect was observed on dye removal rates of RBBR solutions. TOC removals above 90% were observed in the catalytic ozonation using CuS for both of the dye solutions at pH =10 having initial dye concentration of 100 mg/L. The most significant effect of the catalyst addition was observed at pH = 3 where the TOC removals of non-catalytic ozonation were the lowest. CuS addition increased percent TOC removal at the end of the reaction period of 80 min by 123% in the treatment of 100 mg/L RBBR solution, and by 65% in the treatment of 100 mg/L RB-5 solution at pH = 3. On the other hand, addition of Fe/Al2O3 catalyst increased TOC removal of 100 mg/L RB-5 solution by 52 % at pH = 3. In addition, volumetric mass transfer coefficients (kLa) of ozone in the absence and in the presence of a chemical reaction between dye and ozone were estimated from modeling. A correlation for the enhancement factor of ozone absorbed into dye solutions in terms of initial dye concentration was obtained and reported.


Catalytic ozonation of industial textile wastewaters in a three phase fluidized bed reactor
Polat, Didem; Özbelge, Ayşe Tülay; Department of Chemical Engineering (2010)
Textile wastewaters are highly colored and non-biodegradable having variable compositions of colored dyes, surfactants and toxic chemicals. Recently, ozonation is considered as an effective method that can be used in the treatment of industrial wastewaters; catalytic ozonation being one of the advanced oxidation processes (AOPs), is applied in order to reduce the ozone consumption and to increase the chemical oxygen demand (COD) and total organic carbon (TOC) removals. In this study, catalytic ozonation of ...
Screening and characterization of catalytic composite membranes for ethyllactate production
Oğuzer, Özge; Karakaş, Gürkan; Department of Chemical Engineering (2004)
In this research, molybdophosphoric acid (PMo) was blended with polysulfone polymer (PSF) and form a film catalyst by using a common solvent dimethylformamide (DMF). Kinetic and mass transfer parameters were evaluated for catalytic films in ethanol lactic acid esterification reaction as film surface area, film thickness and catalyst loading were varied at 50?C, 1 atm and 1:1 ethyl alcohol to lactic acid mole ratio conditions. Also prepared films were characterized by DSC, TGA, FTIR, X-ray and SEM analysis. ...
Dynamic Behavior of continuous flow stirred slurry reactors in boric acid production
Yücel Çakal, Gaye Ö; Eroğlu, İnci; Department of Chemical Engineering (2004)
One of the most important boron minerals, colemanite is reacted with sulfuric acid to produce boric acid. During this reaction, gypsum (calcium sulfate dihydrate) is formed as a byproduct. In this study, the boric acid production was handled both in a batch and four continuously stirred slurry reactors (4-CFSSR̕s) in series system. In this reaction system there are at least three phases, one liquid and two solid phases (colemanite and gypsum). In a batch reactor all the phases have the same operating time (...
Nanofiltration and Reverse Osmosis for Reuse of Indigo Dye Rinsing Waters
Uzal, Nigmet; Yılmaz, Levent; Yetiş, Ülkü (Informa UK Limited, 2010-01-01)
A membrane based treatment strategy was developed for the possible recycling of rinsing wastewater from indigo dyeing to the process itself. Performances of three different nanofiltration (NF) (NF 270 and NF 90, Dow Film Tech, USA and NF 99, Alfa Laval, Denmark) and two different reverse osmosis (RO) (HR 98 PP and CA 995 PE, Alfa Laval, Denmark) membranes were investigated with wastewater collected from the first post-rinsing tank of indigo dyeing process of a denim manufacturing plant. Dead-end microfiltra...
Zinc borate production in a batch reactor
Gürhan, Deniz; Eroğlu, İnci; Department of Chemical Engineering (2005)
Zinc borate is a flame retardant additive used in polymers, wood applications and textile products. There are different types of zinc borate having different chemical composition and structure. In this study, the production of zinc borate that had the molecular formula of 2ZnO.3B2O3.3,5H2O was studied. The aim of this study was to investigate the effects of reaction parameters on the properties of zinc borate that had been synthesized by the reaction of boric acid and zinc oxide at the existence of the seed...
Citation Formats
S. Pirgalıoğlu, “Catalytic Ozonation of Dye Solutions in a Semi-Batch Reactor,” M.S. - Master of Science, Middle East Technical University, 2008.