Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Videos
Videos
Thesis submission
Thesis submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Contact us
Contact us
Catalytic Ozonation of Dye Solutions in a Semi-Batch Reactor
Download
index.pdf
Date
2008
Author
Pirgalıoğlu, Saltuk
Metadata
Show full item record
Item Usage Stats
4
views
6
downloads
Cite This
Treatment of textile wastewaters containing dye materials using the conventional methods based on biological treatment is not possible. In order to overcome this problem, ozonation based on the oxidation of organic pollutants with ozone gas dissolved in aqueous phase have been studied widely. Catalytic ozonation and advanced oxidation processes (AOP) are also used in order to increase the efficiency of sole ozonation In this work, catalytic ozonation processes in the presence of Copper Sulfide (CuS) powder and a synthesized catalyst by the impregnation of iron on alumina (Fe/Al2O3) were studied separately in the treatment of dye solutions, namely Remazol Brilliant Blue-R (RBBR) and Reactive Black-5 (RB-5). Besides catalytic ozonation runs, ozonation parameters and ozonation mechanism were also studied and a model was developed for the semi-batch ozonation. Both catalysts increased the oxidation of side products measured by the decrease in the amount of total organic carbon (TOC) in the treated dye solutions. Dye removal rates were also enhanced in the treatment of RB-5 dye solutions while no significant effect was observed on dye removal rates of RBBR solutions. TOC removals above 90% were observed in the catalytic ozonation using CuS for both of the dye solutions at pH =10 having initial dye concentration of 100 mg/L. The most significant effect of the catalyst addition was observed at pH = 3 where the TOC removals of non-catalytic ozonation were the lowest. CuS addition increased percent TOC removal at the end of the reaction period of 80 min by 123% in the treatment of 100 mg/L RBBR solution, and by 65% in the treatment of 100 mg/L RB-5 solution at pH = 3. On the other hand, addition of Fe/Al2O3 catalyst increased TOC removal of 100 mg/L RB-5 solution by 52 % at pH = 3. In addition, volumetric mass transfer coefficients (kLa) of ozone in the absence and in the presence of a chemical reaction between dye and ozone were estimated from modeling. A correlation for the enhancement factor of ozone absorbed into dye solutions in terms of initial dye concentration was obtained and reported.
Subject Keywords
Chemical engineering.
URI
http://etd.lib.metu.edu.tr/upload/3/12610158/index.pdf
https://hdl.handle.net/11511/18023
Collections
Graduate School of Natural and Applied Sciences, Thesis
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Pirgalıoğlu, “Catalytic Ozonation of Dye Solutions in a Semi-Batch Reactor,” M.S. - Master of Science, 2008.