Development of a two-dimensional Navier-Stokes solver for laminar flows using cartesian grids

Download
2011
Şahin, Mehmet Serkan
A fully automated Cartesian/Quad grid generator and laminar flow solver have been developed for external flows by using C++. After defining the input geometry by nodal points, adaptively refined Cartesian grids are generated automatically. Quadtree data structure is used in order to connect the Cartesian cells to each other. In order to simulate viscous flows, body-fitted quad cells can be generated optionally. Connectivity is provided by cut and split cells such that the intersection points of Cartesian cells are used as the corners of quads at the outmost row. Geometry based adaptation methods for cut, split cells and highly curved regions are applied to the uniform mesh generated around the geometry. After obtaining a sufficient resolution in the domain, the solution is achieved with cellcentered approach by using multistage time stepping scheme. Solution based grid adaptations are carried out during the execution of the program in order to refine the regions with high gradients and obtain sufficient resolution in these regions. Moreover, multigrid technique is implemented to accelerate the convergence time significantly. Some tests are performed in order to verify and validate the accuracy and efficiency of the code for inviscid and laminar flows.

Suggestions

The method of lines solution of the discrete ordinates method for radiative heat transfer in enclosures
Selçuk, Nevin; Külah, Görkem (2000-04-01)
A radiation code based on the method of fines (MOL) solution of the discrete ordinates method (DOM) for transient three-dimensional radiative heat transfer in rectangular enclosures for use in conjunction with a computational fluid dynamics (CFD) code based on the same approach,vas developed. Assessment of the predictive accuracy of the code by benchmarking its steady-state solutions against exact solutions on one- and three-dimensional test problems shows that the MOL solution of the DOM provides accurate ...
Comparison of Inverter Topologies Suited for Integrated Modular Motor Drive Applications
Ugur, Mesut; Sarac, Hakan; Keysan, Ozan (2018-08-30)
In this paper, various inverter topologies are compared for integrated modular motor drive (IMMD) applications. Two-level voltage source inverter (2L-VSI), three level voltage source inverter (3L-VSI) and series/parallel combinations of these topologies with system level modularity are compared in terms of voltage and current harmonic spectrum, passive component sizes and motor drive efficiency. New generation wide band-gap GaN power semiconductor devices are utilized in modular topologies and they are comp...
Implementation of k-epsilon turbulence models in a two dimensional parallel navier-stokes solver on hybrid grids
Kalkan, Onur Ozan; Tuncer, İsmail Hakkı; Department of Aerospace Engineering (2014)
In this thesis, the popular k-ε turbulence model is implemented on a parallel, 2-dimensional, explicit, density-based, finite volume based Navier-Stokes solver works on hybrid grids, HYP2D. Among the other versions available in the open literature, standard version of the k-ε turbulence mode is studied. Launder-Spalding and Chieng-Launder wall functions are adapted to the turbulence model in order to investigate the effects of the strong gradients in the vicinity of the wall on the turbulence. In order to i...
Development of electrochemical etch-stop techniques for integrated MEMS sensors
Yaşınok, Gözde Ceren; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis presents the development of electrochemical etch-stop techniques (ECES) to achieve high precision 3-dimensional integrated MEMS sensors with wet anisotropic etching by applying proper voltages to various regions in silicon. The anisotropic etchant is selected as tetra methyl ammonium hydroxide, TMAH, considering its high silicon etch rate, selectivity towards SiO2, and CMOS compatibility, especially during front-side etching of the chip/wafer. A number of parameters affecting the etching are inv...
Development of a closely coupled approach for solution of static and dynamic aeroelastic problems
Başkut, Erkut; Seber, Güçlü; Department of Aerospace Engineering (2010)
In this thesis a fluid-structure coupling procedure which consists of a commercial flow solver, FLUENT, a finite element structural solver, MSC/NASTRAN, and the coupling interface between the two disciplines is developed in order to solve static and dynamic aeroelastic problems. The flow solver relies on inviscid Euler equations with finite volume discretization. In order to perform faster computations, multiple processors are parallelized. Closely coupled approach is used to solve the coupled field aeroela...
Citation Formats
M. S. Şahin, “Development of a two-dimensional Navier-Stokes solver for laminar flows using cartesian grids,” M.S. - Master of Science, Middle East Technical University, 2011.