Parameters influencing long term performance and durability of PEM fuel cells

Download
2011
Şayin, Elif Seda
Fuel cells are the tools which convert chemical energy into electricity directly by the effective utilization of hydrogen and oxygen (or air). One of the most important barriers for the fuel cell commercialization is the durability of the fuel cell components in the long term operations. In this study, the durability of the PEM fuel cell electrocatalysts were investigated via cyclic voltammetry (CV) and rotating disk electrode (RDE) experiments in order to determine the hydrogen oxidation reaction (HOR) and oxygen reduction reaction (ORR) which corresponds to the half cell reactions in the fuel cell. PEM fuel cell electrodes mainly composed of carbon supported Pt catalysts. In long term operations due to Pt dissolution and carbon corrosion some properties of the electrocatalysts can be changed. Performance losses in catalysts mainly depend on; i) decrease in the total metal surface area (SA) and the electrochemically active surface area (ESA) due to the increase in the particle size ii) decrease in the tafel slope potential in ORR and iii) increase in carbon corrosion. In this study, these properties were examined via accelerated degradation tests performed in CV and RDE. The catalysts having different Pt loadings, synthesized with different ink compositions, pH values and microwave durations were investigated. The commercial catalysts having Pt loadings of 20, 50 and 70 (wt %) were tried and best results were obtained for Pt/V (50 wt %) catalyst. Different carbon to Nafion® ratios of 4, 8, 12 in the ink composition were tried. C/N ratio of 8 gave the best result in Pt dissolution and carbon corrosion degradation tests. The catalysts prepared at different pH values of 1.4, 6.25 and 10 were tried and the catalyst prepared at pH of 10 was less degraded in Pt dissolution test and the catalyst prepared at pH of 6.25 showed better resistance to carbon corrosion. Catalysts prepared under different microwave durations of 50, 60 and 120 s were tried and the catalyst prepared at 60 s gave the best performances.

Suggestions

Development of 100w portable fuel cell system working with sodium borohydride
Erkan, Serdar; Eroğlu, İnci; Department of Chemical Engineering (2011)
Fuel cells are electricity generators which convert chemical energy of hydrogen directly to electricity by means of electrochemical oxidation and reduction reactions. A single proton exchange membrane (PEM) fuel cell can only generate electricity with a potential between 0.5V and 1V. The useful potential can be achieved by stacking cells in series to form a PEM fuel cell stack. There is a potential to utilize 100W class fuel cells. Fuelling is the major problem of the portable fuel cells. The aim of this th...
Combinatorial development of LSC-113/LSC-214 cathode materials for intermediate temperature solid oxide fuel cells
Sarı, Doğancan; Öztürk, Tayfur; Kalay, Yunus Eren; Department of Metallurgical and Materials Engineering (2017)
Solid oxide fuel cells are environmentally friendly, efficient and fuel versatile energy conversion devices which suffer from high operating temperatures. For lowering the operating temperatures of solid oxide fuel cells (SOFC), LSC-113/LSC-214 composite cathodes have recently attracted much attention due to their enhanced kinetics. However, the full potential of this novel system is still unknown. In this study, a combinatorial approach was used to develop cathode materials which would reduce operating tem...
Thermal management of solid oxide fuel cells by flow arrangement
Şen, Fırat; Tarı, İlker; Department of Mechanical Engineering (2012)
Solid oxide fuel cell (SOFC) is a device that converts the chemical energy of the fuel into the electricity by the chemical reactions at high temperatures (600-1000oC). Heat is also produced besides the electricity as a result of the electrochemical reactions. Heat produced in the electrochemical reactions causes the thermal stresses, which is one of the most important problems of the SOFC systems. Another important problem of SOFCs is the low fuel utilization ratio. In this study, the effect of the flow ar...
MODELING OF BIPOLAR PLATES FOR PROTON EXCHANGE MEMBRANE FUEL CELLS
Ekiz, Ahmet; Camci, Talha; Turkmen, Ibrahim; SANKIR, MEHMET; USLU, SITKI; Baker, Derek Keıth; Agar, Ertan (2011-09-01)
Fuel cell technology is one of the most economic and efficient ways to utilize hydrogen energy. Various types of fuel cells are present regarding the fuel type and amount of power produced. Among these, proton exchange membrane fuel cells (PEMFCs) are very promising. In this work, a 2D proton exchange membrane fuel cell unit cell was modeled using Comsol Multiphysics software. Cell section was taken parallel to flow direction. Obstacles with various geometries were placed in the flow channel in order to for...
Development of anodes for direct oxidation of methane fuel in solid oxide fuel cells
Akdeniz, Yelda; Timurkutluk, Bora; Timurkutluk, Cigdem (2016-06-22)
In addition to pure hydrogen, solid oxide fuel cells (SOFCs) can utilize hydrocarbons as a fuel. However, conventional Ni-based anodes exhibit an excellent catalytic activity towards the hydrocarbon cracking reaction and thus the carbon deposition occurs in the anode. The deposited carbons quickly deactivate the anode irreversibly by covering the active surface of the anode catalyst. As a result, a significant degradation in the cell performance can be seen. In this study, the anode structure is modified by...
Citation Formats
E. S. Şayin, “Parameters influencing long term performance and durability of PEM fuel cells,” M.S. - Master of Science, Middle East Technical University, 2011.