Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effect of operating parameters on performance of additive/ zeolite/ polymer mixed matrix membranes
Download
index.pdf
Date
2011
Author
Oral, Edibe Eda
Metadata
Show full item record
Item Usage Stats
303
views
101
downloads
Cite This
Membrane based separation techniques have been widely used and developed over decades. Generally polymeric membranes are used in membrane based gas separation; however their gas separation performances are not sufficient enough for industrial feasibility. On the other hand inorganic membranes have good separation performance but they have processing difficulties. As a consequence mixed matrix membranes (MMMs) which comprise of inorganic particles dispersed in organic matrices are developed. Moreover, to enhance the interaction between polymer and zeolite particles ternary mixed matrix membranes are introduced by using low molecular weight additives as third component and promising results were obtained at 35 °C. Better understanding on gas transport mechanism of these membranes could be achieved by studying the effect of preparation and operating parameters. This study investigates the effect of operation temperature and annealing time and temperature on gas separation performance of MMMs. The membranes used in this study consist of glassy polyethersulfone (PES) polymer, SAPO-34 particles and 2- v hidroxy 5-methyl aniline (HMA) as compatibilizer. The membranes fabricated in previous study were used and some membranes were used as synthesized while post annealing (at 120°C, 0.2atm, N2 atm, 7-30 days) applied to some membranes before they are tested. The temperature dependent gas transport properties of the membranes were characterized by single gas permeation measurements of H2, CO2, and CH4 gases between 35 °C-120 °C. The membranes also characterized by scanning electron microscopy (SEM), thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). Annealing time and temperature affected the reproducibility and stability of the mixed matrix membranes and by applying post annealing step to mixed matrix membranes at higher temperatures and longer times, more stable membranes were obtained. For pure PES membranes thermally stable performances were obtained without any need of extra treatment. The permeabilities of all studied gases increased with increasing operation temperature. Also the selectivities of H2/CO2 were increased while CO2/CH4, H2/CH4 selectivities were decreased with temperature. The best separation performance belongs to PES/SAPO-34/HMA mixed matrix membrane at each temperature. When the temperature increased from 35 °C to 120 °C H2/CO2 selectivity for PES/SAPO- 34/HMA membrane was increased from 3.2 to 4.6 and H2 permeability increased from 8 Barrer to 26.50 Barrer. This results show that for H2/CO2 separation working at higher temperatures will be more advantageous. The activation energies were found in the order of; CH4 > H2> CO2 for all types of membranes. Activation energies were in the same order of magnitude for all membranes but the PES/SAPO-34 membrane activation energies were slightly lower than PES membrane. Furthermore, PES/SAPO-34/HMA membrane has activation energies higher than PES/SAPO-34 membrane and is very close to pure membrane which shows that HMA acts as a compatibilizer between two phases.
Subject Keywords
Chemical engineering.
,
Gas separation.
,
Membranes (Technology).
URI
http://etd.lib.metu.edu.tr/upload/12612957/index.pdf
https://hdl.handle.net/11511/20471
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Polycarbonate based zeolite 4a filled mixed matrix membranes: preparation, characterization and gas separation performances
Şen, Değer; Yılmaz, Levent; Department of Chemical Engineering (2008)
Developing new membrane morphologies and modifying the existing membrane materials are required to obtain membranes with improved gas separation performances. The incorporation of zeolites and low molecular-weight additives (LMWA) into polymers are investigated as alternatives to modify the permselective properties of polymer membranes. In this study, these two alternatives were applied together to improve the separation performance of a polymeric membrane. The polycarbonate (PC) chain characteristics was a...
Effect of preparation parameters on the performance of conductive composite gas separation membranes
Gulsen, D; Hacarloglu, P; Toppare, Levent Kamil; Yılmaz, Levent (2001-02-15)
Mixed matrix composite membranes of a conducting polymer, polypyrrole (PPy), and an insulating polymer, polybisphenol-A-carbonate (PC) were prepared by a combined in-situ polymerization and solvent evaporation. Mixed matrix composite membranes were synthesized to combine the good gas transport properties of conductive polymer, PPy, with good mechanical properties of PC.
Effect of fiber and resin type on the axial and circumferencial tensile strength of fiber reinforced polyester pipe
Gökçe, Neslihan; Yılmazer, Ülkü; Department of Polymer Science and Technology (2008)
In this study, the aim is to investigate the stiffness, longitudinal tensile strength and circumferential tensile strength of short fiber reinforced polyester composite pipes produced by centrifugal casting production method. To achieve this aim, theoretical calculation of modulus of elasticity of pipes was done and then test program was carried out on pipe samples produced with three different resin types which were orthophthalic, isophthalic and vinyl ester resin and three different fiber types which were...
Effect of the particle size of ZIF-8 on the separation performance of ZİF-8/PNA/PES membranes
Ayas, İlhan; Kalıpçılar, Halil; Yılmaz, Levent; Department of Chemical Engineering (2014)
Membrane based separation processes have great potential of acquiring a significant role in the gas separation processes in the coming future. In this study, the effect of the particle size of ZIF-8 on the gas separation performance of PES/pNA/ZIF-8 mixed matrix membranes (MMMs) was investigated. MMMs were prepared by solvent evaporation method, and polyethersulfone (PES) was used as the polymer, p-nitro aniline (pNA) as the low molecular weight additive and Zeolitic Imidazolate Framework-8 (ZIF-8) as fille...
Effect of preparation and operation parameters on performance of polyethersulfone based mixed matrix gas separation membranes
Karatay, Elif; Yılmaz, Levent; Department of Chemical Engineering (2009)
Membrane processes have been considered as promising alternatives to other competing technologies in gas separation industry. Developing new membrane morphologies are required to improve the gas permeation properties of the membranes. Mixed matrix membranes composing of polymer matrices and distributed inorganic/organic particles are among the promising, developing membrane materials. In this study, the effect of low molecular weight additive (LMWA) type and concentration on the gas separation performance o...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. E. Oral, “Effect of operating parameters on performance of additive/ zeolite/ polymer mixed matrix membranes,” M.S. - Master of Science, Middle East Technical University, 2011.