Capacitive cmos readouts for high performance mems accelerometers

Download
2011
Sönmez, Uğur
MEMS accelerometers are quickly approaching navigation grade performance and navigation market for MEMS accelerometer systems are expected to grow in the recent years. Compared to conventional accelerometers, these micromachined sensors are smaller and more durable but are generally worse in terms of noise and dynamic range performance. Since MEMS accelerometers are already dominant in the tactical and consumer electronics market, as they are in all modern smart phones today, there is significant demand for MEMS accelerometers that can reach navigation grade performance without significantly altering the developed process technologies. This research aims to improve the performance of previously fabricated and well-known MEMS capacitive closed loop ΣΔ accelerometer systems to navigation grade performance levels. This goal will be achieved by reducing accelerometer noise level through significant changes in the system architecture and implementation of a new electronic interface readout ASIC. A flexible fourth order ΣΔ modulator was chosen as the implementation of the electro-mechanical closed loop system, and the burden of noise shaping in the modulator was shifted from the mechanical sensor to the programmable electronic readout. A novel operational transconductance amplifier (OTA) was also designed for circuit implementation of the electronic interface readout. Design and fabrication of the readout was done in a standard 0.35 µm CMOS technology. With the newly designed and fabricated readout, single-axis accelerometers were implemented and tested for performance levels in 1g range. The implemented system achieves 5.95 µg/sqrt Hz, 6.4 µg bias drift, 131.7 dB dynamic range and up to 37.2 g full scale range with previously fabricated dissolved epitaxial wafer process (DEWP) accelerometers in METU MEMS facilities. Compared to a previous implementation with the same accelerometer element reporting 153 µg/sqrtHz, 50 µg bias drift, 106.8 dB dynamic range and 33.5 g full scale range; this research reports a 25 fold improvement in noise, 24 dB improvement in dynamic range and removal of the deadzone region.

Suggestions

Milimeter wave MMIC amplifier linearization by predistortion
Çağlar, Barış; Demir, Şimşek; Department of Electrical and Electronics Engineering (2006)
For millimeter wave applications, MMIC is the best contemporary technology. Considering the requirements of the commercial and military applications on amplitude and phase linearity, it is necessary to reduce the nonlinearity of the amplifiers. There are several linearization techniques that are used to reduce the nonlinearity effects. In the context of the thesis, a special analog predistortion technique that is called “self cancellation scheme” is used to linearize a 35GHz MMIC amplifier. The amplifier to...
High performance readout electronics for uncooled infrared detector arrays
Yıldırım, Ömer Özgür; Akın, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development of high performance readout electronics for resistive microbolometer detector arrays that are used for uncooled infrared imaging. Three different readout chips are designed and fabricated by using a standard 0.6 m CMOS process. Fabricated chips include a conventional capacitive transimpedance amplifier (CTIA) type readout circuit, a novel readout circuit with dynamic resistance nonuniformity compensation capability, and a new improved version of the CTIA circuit. The fabr...
Reliability improvement of RF MEMS devices based on lifetime measurements
Gürbüz, Ozan Doğan; Demir, Şimşek; Akın, Tayfun; Department of Electrical and Electronics Engineering (2010)
This thesis presents fabrication of shunt, capacitive contact type RF MEMS switches which are designed according to given mm-wave performance specifications. The designed switches are modified for investigation in terms of reliability and lifetime. To observe the real-time performance of switches a time domain measurement setup is established and a CV (capacitance vs. voltage) curve measurement system is also included to measure CV curves, pull-in and hold-down voltages and the shifts of these due to actuat...
High performance CMOS capacitive interface circuits for MEMS gyroscopes
Silay, Kanber Mithat; Akar, Tayfun; Department of Electrical and Electronics Engineering (2006)
This thesis reports the development and analysis of high performance CMOS readout electronics for increasing the performance of MEMS gyroscopes developed at Middle East Technical University (METU). These readout electronics are based on unity gain buffers implemented with source followers. High impedance node biasing problem present in capacitive interfaces is solved with the implementation of a transistor operating in the subthreshold region. A generalized fully differential gyroscope model with force feed...
Radiation Testing of Commercial Rechargeable Lithium Polymer Batteries for Small Satellite Applications
Muçogllava, Brunilda; Karim Hashmani, Raheem; Çakmakoğlu, Selman; Demirköz, Melahat Bilge (2022-11-01)
Commercial off-the-shelf (COTS) electrical components are becoming of interest for small satellite applications due to their accessibility, good performance, and low cost. We quantify the performance of Lithium Polymer (LiPo) COTS batteries under irradiation to assess their reliability. LiPo battery cells with LiCoO2 cathodes, nominal voltages of 3.7 V, and rated capacities of 6000 mAh are irradiated with a 30 MeV proton beam from the Middle East Technical University Defocusing Beamline, which delivers a ma...
Citation Formats
U. Sönmez, “Capacitive cmos readouts for high performance mems accelerometers,” M.S. - Master of Science, Middle East Technical University, 2011.