Developing a four-bar mechanism synthesis program in cad environment

Download
2011
Erener, Kaan
Flap, aileron, rudder, elevator, speed brake, stick, landing gear and similar movable systems used in aerospace industry have to operate according to the defined requirements and mechanisms used in those systems have to be synthesized in order to fulfill those requirements. Generally, without the use of synthesis tools, synthesis of mechanisms are done in CAD environment by trial-error and geometrical methods due to the complexity of analytical procedures. However, this approach is time consuming since it has to be repeated until the synthesized mechanism has suitable mechanism properties like transmission angle and connection points. Due to above reasons, a software developed for synthesis of mechanisms within the CAD environment can utilize all the graphical interfaces and provides convenience in mechanism design. In this work, it is aimed to develop a four-bar mechanism synthesis tool which is compatible with CATIA V5 by considering the requirements of aerospace industry. This tool performs function, path and motion synthesis and shows suitable mechanisms in CATIA according to input obtained from CATIA and mechanism properties.

Suggestions

Development of Structural Neural Network Design Tool for Buckling Behaviour of Skin-Stringer Structures Under Combined Compression and Shear Loading
Okul, Aydın; Gürses, Ercan (2018-11-15)
Stiffened panels are commonly used in aircraft structures in order to resist high compression and shear forces with minimum total weight. Minimization of the weight is obtained by combining the optimum design parameters. The panel length, the stringer spacing, the skin thickness, the stringer section type and the stringer dimensions are some of the critical parameters which affect the global buckling allowable of the stiffened panel. The aim of this study is to develop a design tool and carry out a geometri...
Development of a State Dependent Riccati Equation Based Tracking Flight Controller for an Unmanned Aircraft
Tekinalp, Ozan (2013-08-22)
A dual loop nonlinear State Dependent Riccati Equation (SDRE) control method is developed for the flight control of an unmanned aircraft. The outer loop addresses the attitude and altitude kinematics, while the inner loop handles the translational and rotational equations of motion. The control strategy utilizes a tracking control problem. The mismatch due to the SDC factorization of the inner loop is handled with a nonlinear compensator again derived from the tracking control formulation. The quadratic opt...
Enhancing positioning accuracy of GPS/INS system during GPS outages utilizing artificial neural network
Kaygisiz, Burak H.; Erkmen, Aydan Müşerref; Erkmen, İsmet (Springer Science and Business Media LLC, 2007-06-01)
Integrated global positioning system and inertial navigation system (GPS/INS) have been extensively employed for navigation purposes. However, low-grade GPS/INS systems generate erroneous navigation solutions in the absence of GPS signals and drift very fast. We propose in this paper a novel method to integrate a low-grade GPS/INS with an artificial neural network (ANN) structure. Our method is based on updating the INS in a Kalman filter structure using ANN during GPS outages. This study focuses on the des...
Coordinate systems for a naval virtual environment
Kılıç, Aslı; Oğuztüzün, Mehmet Halit S.; Department of Computer Engineering (2005)
The purpose of this thesis is implementing World Geodetic System (WGS) for Naval Surface Tactical Maneuvering Simulation System (NSTMSS), a High Level Architecture (HLA) based naval simulation, and also implementing body coordinate system for the ships of NSTMSS and its combination with WGS so that NSTMSS can be more accurate, and new ship dynamics models can be integrated to the NSTMSS environment more easily. To improve the coordinate system of NSTMSS these methods were used; World Geodetic System - 1984 ...
DEVELOPMENT OF ARTIFICIAL NEURAL NETWORK BASED DESIGN TOOL FOR AIRCRAFT ENGINE BOLTED FLANGE CONNECTION SUBJECT TO COMBINED AXIAL AND MOMENT LOAD
Sanli, T. Volkan; Gürses, Ercan; Çöker, Demirkan; Kayran, Altan (2017-11-09)
Bolted flange connections are one of the most commonly used joint types in aircraft structures. Typically, bolted flange connections are used in aircraft engines. The main duty of a bolted flange connection in an aircraft engine is to serve as the load transfer interface from one part of the engine to the other part of the engine. In aircraft structures, weight is a very critical parameter which has to be minimized while having the required margin of safety for the structural integrity. Therefore, optimum d...
Citation Formats
K. Erener, “Developing a four-bar mechanism synthesis program in cad environment,” M.S. - Master of Science, Middle East Technical University, 2011.