Application of Surface-Enhanced Raman Scattering (SERS) method for genetic analyses

Karabıçak, Seher
Raman spectroscopy offers much better spectral selectivity but its usage has been limited by its poor sensitivity. The discovery of surface-enhanced Raman scattering (SERS) effect, which results in increased sensitivities of up to 108-fold for some compounds, has eliminated this drawback. A new SERS active substrate was developed in this study. Silver nanoparticle-doped polyvinyl alcohol (PVA) coated SERS substrate prepared through chemical and electrochemical reduction of silver particles dispersed in the polymer matrix. Performances of the substrates were evaluated with some biologically important compounds. The specific detection of DNA has gained significance in recent years since increasingly DNA sequences of different organisms are being assigned. Such sequence knowledge can be employed for identification of the genes of microorganisms or diseases. In this study, specific proteasome gene sequences were detected both label free spectrophotometric detection and SERS detection. In label free spectrophotometic detection, proteasome gene probe and complementary target gene sequence were attached to the gold nanoparticles separately. Then, the target and probe oligonucleotide-modified gold solutions were mixed for hybridization and the shift in the surface plasmon absorption band of gold nanoparticles were followed. SERS detection of specific nucleic acid sequences are mainly based on hybridization of DNA targets to complementary probe sequences, which are labelled with SERS active dyes. In this study, to show correlation between circulating proteasome levels and disease state we suggest a Raman spectroscopic technique that uses SERGen probes. This novel approach deals with specific detection of elevated or decreased levels of proteasome genes’ transcription in patients as an alternative to available enzyme activity measurement methods. First, SERGen probes were prepared using SERS active labels and specific proteasome gene sequences. Then DNA targets to complementary SERGen probe sequences were hybridized and SERS active label peak was followed.
Citation Formats
S. Karabıçak, “Application of Surface-Enhanced Raman Scattering (SERS) method for genetic analyses,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.