Ontology based reuse infrastructure for trajectory simulation

Durak, Umut
In this research, we developed an ontology based reuse infrastructure for trajectory simulation and investigated the use of ontologies and domain engineering practices to develop a formalized methodology to make use of the experience and knowledge leveraged from the past trajectory simulation projects. Trajectory simulation in this context is a computational tool to calculate the flight path and other parameters of munition such as its orientation or angular rates during its operation In this thesis, engineering knowledge to simulate the trajectory of a munition is captured in an ontology called Trajectory Simulation ONTology (TSONT). Concepts of trajectory simulation and the relation among these concepts are captured by using Web Ontology Language and presented as a domain model that is available for reuse. Using the formalized domain knowledge, reuse infrastructure specifications are constructed to enable the reuse of software artifacts for two main programming paradigms, which are object oriented programming and function oriented programming. UML and application frameworks are used when constructing for object oriented paradigm. And data flow diagrams are used to formalize the design of the function oriented simulations to compute the trajectory of munition. Object oriented and function oriented platform independent designs are constructed to specify the infrastructure using the knowledge captured in TSONT and made available for reuse. With constructing two different designs for two different paradigms by using the same domain model, evidence of knowledge reuse were produced. Three different case studies were carried out as infrastructure implementation. In the first case study, an object oriented application framework was developed in MATLAB for six degrees of freedom trajectory simulation using platform independent object oriented design. This framework is reused to develop two different simulations. Using the developed framework for two applications produced evidence of code reuse. In the second case, a point mass trajectory simulation framework is designed to be implemented in C# reusing the same platform independent object oriented design. This case produced the evidence of design reuse. In the last case study, a MATLAB Simulink Blockset is developed for point mass unguided trajectory simulations and two different simulations are built using the Blockset. By this case, we collected the evidence of code reuse also in function oriented paradigm.
Citation Formats
U. Durak, “Ontology based reuse infrastructure for trajectory simulation,” Ph.D. - Doctoral Program, Middle East Technical University, 2007.