Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealizations in the preliminary design phase

Download
2011
Dababneh, Odeh
This thesis gives a comprehensive study on the effect of using different structural idealizations on the design, analysis and optimization of thin walled semi-monocoque wing structures in the preliminary design phase. In the design part, wing structures are designed by employing two different structural idealizations that are typically used in the preliminary design phase. In the structural analysis part, finite element analysis of one of the designed wing configurations is performed using six different one and two dimensional element pairs which are typically used to model the sub-elements of semi-monocoque wing structures. The effect of using different finite element types on the analysis results of the wing structure is investigated. During the analysis study, depending on the mesh size used, conclusions are also inferred with regard to the deficiency of certain element types in handling the true external load acting on the wing structure. Finally in the optimization part, wing structure is optimized for minimum weight by using finite element models which have the same six different element pairs used in the analysis phase. The effect of using different one and two dimensional element pairs on the final optimized configurations of the wing structure is investigated, and conclusions are inferred with regard to the sensitivity of the optimized wing configurations with respect to the choice of different element types in the finite element model. Final optimized wing structure configurations are also compared with the simplified method based designs which are also optimized iteratively. Based on the results presented in the thesis, it is concluded that with the simplified methods, preliminary sizing of the wing structures can be performed with enough confidence, as long as the simplified method based designs are also optimized. Results of the simplified method of analysis showed that simplified method is applicable to be used as an analysis tool in performing the preliminary sizing of the wing structure before moving on to more refined finite element based analysis.

Suggestions

Development of de-icing and anti-icing solutions for aircraft on ground and analysis of their flow instability characteristics
Körpe, Durmuş Sinan; Özgen, Serkan; Department of Aerospace Engineering (2008)
In this thesis, development process of de-icing and anti-icing solutions and their flow instability characteristics are presented. In the beginning, the chemical additives in the solutions and their effects on the most critical physical properties of the solutions were investigated. Firstly, chemical additives were added to glycol and water mixtures at different weight ratios one by one in order to see their individual effects. Then, the changes in physical properties were observed when the chemicals were a...
Analysis of stability and trasitionin flat plate compressible boundary layers using linear stability theory
Atalayer, H. Senem; Özge, Serkan; Department of Aerospace Engineering (2004)
In this study, numerical investigations of stability and transition problems were performed for 2D compressible boundary layers over a flat plate in adiabatic wall condition. Emphasis was placed on linear stability theory. The mathematical formulation for 3D boundary layers with oblique waves including detailed theoretical information was followed by use of the numerical techniques for the solution of resulting differential system of the instability problem, consequently an eigenvalue problem. First, two-di...
Design and analysis of a structural component of a heavy transport aircraft
Çıkrıkcı, Davut; Yaman, Yavuz; Department of Aerospace Engineering (2010)
This thesis aims to present the design and analysis of a structural component of a heavy transport aircraft. The designed component is the “coupling“ which is the interface member connecting two frames or two stringers in the fuselage assembly. The “frames”, which are the circumferential stiffeners, are joined together by the “frame couplings”. The “stringers”, which are the longitudinal stiffeners, are joined together by the “stringer couplings”. At the preliminary design phase; the structural design princ...
Panel-Method-Based Path Planning and Collaborative Target Tracking for Swarming Micro Air Vehicles
Uzol, Oğuz; Yavrucuk, İlkay (American Institute of Aeronautics and Astronautics (AIAA), 2010-03-01)
This paper presents an application of the potential field panel method commonly used in aerodynamics analysis to obtain streamlinelike trajectories and use them for path planning and collaborative target tracking for swarming micro air vehicles in an urban environment filled with complex shaped buildings and other architectural structures. In addition, we introduce a performance matching technique that relates the flu id velocities, which are obtained as a part of the panel method solution, to vehicle veloc...
Evaluation and comparison of helicopter simulation models with different fidelities
Yılmaz, Deniz; Yavrucuk, İlkay; Department of Aerospace Engineering (2008)
This thesis concerns the development, evaluation, comparison and testing of a UH-1H helicopter simulation model with various fidelity levels. In particular, the well known minimum complexity simulation model is updated with various higher fidelity simulation components, such as the Peters-He inflow model, horizontal tail contribution, improved tail rotor model, control mapping, ground e ect, fuselage interactions, ground reactions etc. Results are compared with available flight test data. The dynamic model ...
Citation Formats
O. Dababneh, “Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealizations in the preliminary design phase,” M.S. - Master of Science, Middle East Technical University, 2011.