Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealizations in the preliminary design phase
Download
index.pdf
Date
2011
Author
Dababneh, Odeh
Metadata
Show full item record
Item Usage Stats
322
views
284
downloads
Cite This
This thesis gives a comprehensive study on the effect of using different structural idealizations on the design, analysis and optimization of thin walled semi-monocoque wing structures in the preliminary design phase. In the design part, wing structures are designed by employing two different structural idealizations that are typically used in the preliminary design phase. In the structural analysis part, finite element analysis of one of the designed wing configurations is performed using six different one and two dimensional element pairs which are typically used to model the sub-elements of semi-monocoque wing structures. The effect of using different finite element types on the analysis results of the wing structure is investigated. During the analysis study, depending on the mesh size used, conclusions are also inferred with regard to the deficiency of certain element types in handling the true external load acting on the wing structure. Finally in the optimization part, wing structure is optimized for minimum weight by using finite element models which have the same six different element pairs used in the analysis phase. The effect of using different one and two dimensional element pairs on the final optimized configurations of the wing structure is investigated, and conclusions are inferred with regard to the sensitivity of the optimized wing configurations with respect to the choice of different element types in the finite element model. Final optimized wing structure configurations are also compared with the simplified method based designs which are also optimized iteratively. Based on the results presented in the thesis, it is concluded that with the simplified methods, preliminary sizing of the wing structures can be performed with enough confidence, as long as the simplified method based designs are also optimized. Results of the simplified method of analysis showed that simplified method is applicable to be used as an analysis tool in performing the preliminary sizing of the wing structure before moving on to more refined finite element based analysis.
Subject Keywords
Airplanes
,
Aerospace engineering.
URI
http://etd.lib.metu.edu.tr/upload/12613759/index.pdf
https://hdl.handle.net/11511/21096
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Development of de-icing and anti-icing solutions for aircraft on ground and analysis of their flow instability characteristics
Körpe, Durmuş Sinan; Özgen, Serkan; Department of Aerospace Engineering (2008)
In this thesis, development process of de-icing and anti-icing solutions and their flow instability characteristics are presented. In the beginning, the chemical additives in the solutions and their effects on the most critical physical properties of the solutions were investigated. Firstly, chemical additives were added to glycol and water mixtures at different weight ratios one by one in order to see their individual effects. Then, the changes in physical properties were observed when the chemicals were a...
Investigation of design and analyses principles of honeycomb structures
Aydıncak, İlke; Kayran, Altan; Department of Aerospace Engineering (2007)
In this thesis, design and analyses of honeycomb structures are investigated. Primary goal is to develop an equivalent orthotropic material model that is a good substitute for the actual honeycomb core. By replacing the actual honeycomb structure with the orthotropic model, during the finite element analyses, substantial advantages can be obtained with regard to ease of modeling and model modification, solution time and hardware resources . To figure out the best equivalent model among the approximate analy...
Analysis of stability and trasitionin flat plate compressible boundary layers using linear stability theory
Atalayer, H. Senem; Özge, Serkan; Department of Aerospace Engineering (2004)
In this study, numerical investigations of stability and transition problems were performed for 2D compressible boundary layers over a flat plate in adiabatic wall condition. Emphasis was placed on linear stability theory. The mathematical formulation for 3D boundary layers with oblique waves including detailed theoretical information was followed by use of the numerical techniques for the solution of resulting differential system of the instability problem, consequently an eigenvalue problem. First, two-di...
Structural optimization strategies via different optimization and solver codes and aerospace applications
Ekren, Mustafa; Kayran, Altan; Department of Aerospace Engineering (2008)
In this thesis, structural optimization study is performed by using three different methods. In the first method, optimization is performed using MSC.NASTRAN Optimization Module, a commercial structural analysis program. In the second method, optimization is performed using the optimization code prepared in MATLAB and MSC.NASTRAN as the solver. As the third method, optimization is performed by using the optimization code prepared in MATLAB and analytical equations as the solver. All three methods provide ce...
Design and analysis of an equipment rack structure of a medium transport aircraft
Yalçın, Mehmet Efruz; Yaman, Yavuz; Department of Aerospace Engineering (2009)
In this study, equipment rack structure for a medium transport aircraft was designed and finite element analysis of this design was performed. The equipment rack structure, which was designed for a modernization project, was positioned and dimensions were determined by regarding the geometry of primary structures of the aircraft. The structure was designed such that it satisfies the pre-defined margin of safety values. Design of the structure was prepared in Unigraphics, and the finite element modeling and ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. Dababneh, “Design, analysis and optimization of thin walled semi-monocoque wing structures using different structural idealizations in the preliminary design phase,” M.S. - Master of Science, Middle East Technical University, 2011.