Analysis of stability and trasitionin flat plate compressible boundary layers using linear stability theory

Atalayer, H. Senem
In this study, numerical investigations of stability and transition problems were performed for 2D compressible boundary layers over a flat plate in adiabatic wall condition. Emphasis was placed on linear stability theory. The mathematical formulation for 3D boundary layers with oblique waves including detailed theoretical information was followed by use of the numerical techniques for the solution of resulting differential system of the instability problem, consequently an eigenvalue problem. First, two-dimensional sinusoidal disturbances were analyzed at various Mach numbers including the subsonic, transonic, supersonic and even hypersonic flow speeds. In this case, the second mode (acoustic mode), namely the Mack mode, and its behavior with the increasing Mach number were visualized. The results were then compared with the available data in literature concluding with good agreements. Secondly, similar analysis was carried out for oblique waves. Here, not only the effect of flow speed but also the effect of wave orientation was demonstrated. For this purpose, instability problem was solved for several wave angles at each Mach number in the range of M=0 and M=5. In this respect, the angle at which the waves were most unstable was also obtained at each investigated flow speed. The resultant stability diagrams corresponding to M=4 and higher Mach numbers for which both first and the second modes appear revealed that plane waves were more stable than oblique waves for the Tollmien-Schlichting mode, however, this was the opposite for the acoustic mode where oblique waves were observed to be more stable. As a final step, estimation of the transition location was handled for the most unstable wave condition. Smith-Van Ingen transition method was applied as the prediction device. The results representing the influence of Mach number on transition Reynolds number were then


Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1992-04-01)
The temporal stability and growth characteristics of three-dimensional supersonic shear layers are numerically investigated. An explicit time-marching scheme that is second-order accurate in time and fourth-order accurate in space is used to study this problem. The shear layer is excited by instability waves computed from a linear stability analysis and random initial disturbances. At low convective Mach numbers, organized vortical structures develop both for the random disturbance and the modal disturba...
Nonlinear flutter calculations using finite elements in a direct Eulerian-Lagrangian formulation
Seber, Guclu; Bendiksen, Oddvar O. (American Institute of Aeronautics and Astronautics (AIAA), 2008-06-01)
A fully nonlinear aeroelastic formulation of the direct Eulerian-Lagrangian computational scheme is presented in which both structural and aerodynamic nonlinearities are treated without approximations. The method is direct in the sense that the calculations are done at the finite element level, both in the fluid and structural domains, and the fluid-structure system is time-marched as a single dynamic system using a multistage Runge-Kutta scheme. The exact nonlinear boundary condition at the fluid-structure...
Time-domain calculation of sound propagation in lined ducts with sheared flows
Özyörük, Yusuf (American Institute of Aeronautics and Astronautics (AIAA), 2000-05-01)
A recent application of the time-domain equivalent of the classical acoustic impedance condition, i.e., the particle displacement continuity equation, to numerical simulations of a Bow-impedance tube in the time domain yielded reasonably good results with uniform mean flows. The present paper extends this application to include sheared mean-flow effects on sound propagation over acoustically treated walls. To assess the prediction improvements with sheared flows, especially at relatively high Mach numbers, ...
On the wake pattern of symmetric airfoils for different incidence angles at Re=1000
Kurtuluş, Dilek Funda (SAGE Publications, 2016-06-01)
In the current study, numerical simulations are performed in order to investigate effects of incidence angle and airfoil thickness on alternating vortex pattern of symmetric airfoils at Re = 1000. This alternating vortex pattern is found to be significantly varying in shape as the incidence angle increases. The results are obtained with 1 degrees increment from 0 degrees to 41 degrees and then with 10 degrees increment from 40 degrees until 180 degrees. The instantaneous and mean vortex patterns are investi...
Computational study of subsonic flow over a delta canard-wing-body configuration
Tuncer, İsmail Hakkı (American Institute of Aeronautics and Astronautics (AIAA), 1998-07-01)
Subsonic flowfields over a close-coupled, delta canard-wing-body configuration at angles of attack of 20, 24,2, and 30 deg are computed using the OVERFLOW Navier-Stokes solver Computed flowfields are presented in terms of particle traces, surface streamlines, and leeward-side surface pressure distributions for the canard-on and -off configurations. The interaction between the canard and the wing vortices, wing vortex breakdown, and the influence of the canard on vortex breakdown are identified, The comparis...
Citation Formats
H. S. Atalayer, “Analysis of stability and trasitionin flat plate compressible boundary layers using linear stability theory,” M.S. - Master of Science, Middle East Technical University, 2004.