Range data recognition: segmentation, matching, and similarity retrieval

Download
2011
Yalçın Bayramoğlu, Neslihan
The improvements in 3D scanning technologies have led the necessity for managing range image databases. Hence, the requirement of describing and indexing this type of data arises. Up to now, rather much work is achieved on capturing, transmission and visualization; however, there is still a gap in the 3D semantic analysis between the requirements of the applications and the obtained results. In this thesis we studied 3D semantic analysis of range data. Under this broad title we address segmentation of range scenes, correspondence matching of range images and the similarity retrieval of range models. Inputs are considered as single view depth images. First, possible research topics related to 3D semantic analysis are introduced. Planar structure detection in range scenes are analyzed and some modifications on available methods are proposed. Also, a novel algorithm to segment 3D point cloud (obtained via TOF camera) into objects by using the spatial information is presented. We proposed a novel local range image matching method that combines 3D surface properties with the 2D scale invariant feature transform. Next, our proposal for retrieving similar models where the query and the database both consist of only range models is presented. Finally, analysis of heat diffusion process on range data is presented. Challenges and some experimental results are presented.

Suggestions

3D object recognition from range images
İzciler, Fatih; Halıcı, Uğur; Department of Electrical and Electronics Engineering (2012)
Recognizing generic objects by single or multi view range images is a contemporary popular problem in 3D object recognition area with developing technology of scanning devices such as laser range scanners. This problem is vital to current and future vision systems performing shape based matching and classification of the objects in an arbitrary scene. Despite improvements on scanners, there are still imperfections on range scans such as holes or unconnected parts on images. This studyobjects at proposing an...
Visual-inertial sensor fusion for 3D urban modeling
Sırtkaya, Salim; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2013)
In this dissertation, a real-time, autonomous and geo-registered approach is presented to tackle the large scale 3D urban modeling problem using a camera and inertial sensors. The proposed approach exploits the special structures of urban areas and visual-inertial sensor fusion. The buildings in urban areas are assumed to have planar facades that are perpendicular to the local level. A sparse 3D point cloud of the imaged scene is obtained from visual feature matches using camera poses estimates, and planar ...
Spatial 3D local descriptors for object recognition in RGB-D images
Loğoğlu, K. Berker; Temizel, Alptekin; Kalkan, Sinan; Department of Information Systems (2016)
Introduction of the affordable but relatively high resolution color and depth synchronized RGB-D sensors, along with the efforts on open-source point-cloud processing tools boosted research in both computer vision and robotics. One of the key areas which have drawn particular attention is object recognition since it is one of the crucial steps for various applications. In this thesis, two spatially enhanced local 3D descriptors are proposed for object recognition tasks: Histograms of Spatial Concentric Surf...
Planar 3d scene representations for depth compression
Özkalaycı, Burak Oğuz; Alatan, Abdullah Aydın; Department of Electrical and Electronics Engineering (2014)
The recent invasion of stereoscopic 3D television technologies is expected to be followed by autostereoscopic and holographic technologies. Glasses-free multiple stereoscopic pair displaying capabilities of these technologies will advance the 3D experience. The prospective 3D format to create the multiple views for such displays is Multiview Video plus Depth (MVD) format based on the Depth Image Based Rendering (DIBR) techniques. The depth modality of the MVD format is an active research area whose main obj...
Camera electronics and image enhancement software for infrared detector arrays
Küçükkömürler, Alper; Akın, Tayfun; Department of Environmental Engineering (2012)
This thesis aims to design and develop camera electronics and image enhancement software for infrared detector arrays. It first discusses the camera electronics suitable for infrared detector arrays, then it concentrates on image enhancement software that are implemented including defective pixel correction, contrast enhancement, noise reduction and pseudo coloring. After that, testing and results of the implemented algorithms were presented. Camera electronics and circuit operation frequency are selected c...
Citation Formats
N. Yalçın Bayramoğlu, “ Range data recognition: segmentation, matching, and similarity retrieval,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.