Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical modeling and optimization of HgCdTe infrared photodetectors for thermal imaging
Download
index.pdf
Date
2011
Author
Koçer, Hasan
Metadata
Show full item record
Item Usage Stats
442
views
220
downloads
Cite This
This thesis presents a detailed investigation of the performance limiting factors of long wavelength infrared (LWIR) and very long wavelength infrared (VLWIR) p on n HgCdTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. Numerical simulations under dark and illuminated conditions were performed with different absorber layer thicknesses, material compositions (cut-off wavelengths), trap density, and trap energy level. The results identify the relative strength of the dark current generation mechanisms by numerically extracting the contribution of each G-R mechanism on the detector characteristics with various cut off wavelengths and practically achievable material parameters. While the provided information can be used as a guide for optimizing the device processing conditions and detector structure, it also enlights the importance of various intrinsic mechanisms on the detector sensitivity. The results show that the dominant sensitivity degrading trap level depends on the detector cut-off wavelength being about 0.7Eg for LWIR HgCdTe sensors (cut-off wavelength=10 µm) instead of 0.5Eg which is generally believed to be the most efficient R-G level. TAT related 1/f noise dominates the sensor noise even under small reverse bias voltages at a trap density as low as 1E14 cm-3 for sensors with cut-off wavelength >11 µm. Considering the fact that trap densities below this level are rarely reported for HgCdTe material, exceptionally trap-free material is required to achieve desirable imaging performance with these sensors. Simulation results show that Auger mechanism has twofold effect on the sensitivity of the sensor by increasing the dark current and decreasing the photo current of the detector. As to our knowledge, this work is one of the most comprehensive simulation based investigations of the HgCdTe detector performance providing important results that can be used as a guide for optimization of the detector performance in order to meet the demanding requirements of the third generation thermal imagers.
Subject Keywords
Infrared imaging.
,
Optical detectors.
URI
http://etd.lib.metu.edu.tr/upload/12613126/index.pdf
https://hdl.handle.net/11511/21148
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical analysis of long wavelength infrared HgCdTe photodiodes
Kocer, H.; Arslan, Y.; Beşikci, Cengiz (2012-01-01)
We present a detailed investigation of the performance limiting factors of long and very long wavelength infrared (LWIR and VLWIR) p on n Hg1-xCdxTe detectors through numerical simulations at 77 K incorporating all considerable generation-recombination (G-R) mechanisms including trap assisted tunneling (TAT), Shockley-Read-Hall (SRH), Auger and radiative processes. The results identify the relative strengths of the dark current generation mechanisms by numerically extracting the contribution of each G-R mec...
Development of high performance uncooled infrared detector materials
Kebapçı, Başak; Akın, Tayfun; Turan, Raşit; Department of Micro and Nanotechnology (2011)
This thesis reports both the optimizations of the vanadium oxide (VOx) thin film as an active infrared detector material by the magnetron sputtering deposition method and its use during fabrication of proper resistors for the microbolometers. Vanadium oxide is a preferred material for microbolometers, as it provides high TCR value, low noise, and reasonable resistance, and a number of high-tech companies have used this material to obtain state-of-the-art microbolometer arrays. This material is first used in...
Ultra-fast charge exchange spectroscopy for turbulent ion temperature fluctuation measurements on the DIII-D tokamak (invited)
Uzun Kaymak, İlker Ümit; McKee, G. R. (2012-10-01)
A novel two-channel, high throughput, high efficiency spectrometer system has been developed to measure impurity ion temperature and toroidal velocity fluctuations associated with long-wavelength turbulence and other plasma instabilities. The spectrometer observes the emission of the n = 8-7 hydrogenic transition of C+5 ions (lambda(air) = 529.06 nm) resulting from charge exchange reactions between deuterium heating beams and intrinsic carbon. Novel features include a large, prism-coupled high-dispersion, v...
High performance focal plane array technologies from short to long wavelength infrared bands
Arslan, Yetkin; Beşikci, Cengiz; Department of Electrical and Electronics Engineering (2014)
This thesis work covers the development of three different state of the art infrared sensor technologies: quantum well infrared photodetectors (QWIPs), HgCdTe sensors and extended InGaAs photodetectors. QWIP is the leading member of the quantum structure infrared photodetector family providing excellent uniformity and stability with field proven performance. The utilization of the InP/In0.48Ga0.52As multi-quantum well structure (instead of the standard AlGaAs/GaAs material system) for the implementation of ...
High performance HgCdTe photodetector desings via dark current suppression
Özer, Yiğit; Kocaman, Serdar; Department of Electrical and Electronics Engineering (2018)
This thesis work covers the numerical analysis and design of infrared photon detectors with a focus of HgCdTe based devices. An in-house numerical tool is utilized for the design and characterization process, where the Poisson, current and continuity equations are solved numerically with the high precision in electrical and optical properties. A high operating temperature alternative substrate mid-wave HgCdTe detector is designed benefiting from the generation-recombination dark current suppression. The adv...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
H. Koçer, “Numerical modeling and optimization of HgCdTe infrared photodetectors for thermal imaging,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.