An experimental study on the behavior of box-shaped culverts buried in sand under dynamic excitations

Download
2011
Ülgen, Deniz
Seismic safety of underground structures (culvert, subway, natural gas and water sewage systems) plays a major role in sustainable public safety and urban development. Very few experimental data are currently available and there is not generally accepted procedure to estimate the dynamic pressures acting on underground structures. This study aims to enhance the state of prevalent information necessary in understanding the dynamic behavior of box culverts and the stresses acting under dynamic excitations through experimental analyses. For this purpose, a series of shaking table tests were conducted on box-type culverts buried in dry sand. To simulate the free-field boundary conditions, a laminar box was designed and manufactured for use in a 1-g shake table. Four culvert models having different rigidities were tested under various harmonic motions in order to examine the effect of flexibility ratio on dynamic lateral soil pressures. Based on the tests results, a simplified dynamic pressure distribution acting on sidewalls of the culvert model was suggested. Then, a dynamic lateral coefficient was defined for the proposed peak pressure value in the distribution. The values of this coefficient were obtained as a function of shear strain and relative stiffness between the soil and underground structure. Finally, a simplified frame analysis approach was suggested for the assessment of the forces on the structure, to help to carry out a preliminary design of box-type culverts. In this approach, it was assumed that the culvert was fixed at bottom and subjected to lateral stresses on sidewalls and shear stresses on the upper face. For the confirmation of the method, centrifuge tests were conducted on a box-type culvert model under the Seventh Framework Programme of European Union with Grant Agreement No.227887. Results show that the proposed simplified procedure can be used in reasonable accuracy as a practical approach for the preliminary assessment of box-type culverts buried in dry sand under seismic action.

Suggestions

EVALUATION OF DYNAMIC SOIL PRESSURES ACTING ON RIGID CULVERTS: SHAKING-TABLE TESTS
ÜLGEN, DENİZ; Özkan, M. Yener (2016-01-01)
The seismic safety of underground structures (culvert, subway, natural-gas and water-sewage systems) plays a major role in sustainable public safety and urban development. Very few experimental data are currently available and there is no generally accepted procedure to estimate the dynamic pressures acting on these underground structures. This study aims to enhance the state of the prevalent information necessary to understand the dynamic behaviour of box culverts and the stresses acting under dynamic exci...
A Proposed Criteria Matrix for Decision Analysis of Post Disaster Temporary Accommodation Units
Akdede, Nil; Ay, Bekir Özer (2018-05-06)
Disasters caused by natural hazards or socio-political crises pose widespread damage on built environment resulted with loss of housing. To meet accommodation needs of disaster victims, temporary accommodation units are a common solution not only to bridge the gap until permanent housing are ready to use but also to provide physical and psychological rehabilitation. As post-disaster accommodation units are absolutely diversified from the housing production in usual conditions with respect to necessity of pr...
An experimental study on the burning rates of interacting fires in tunnels
SHAFEE, SINA; Yozgatlıgil, Ahmet (2018-03-01)
Multiple fires may occur in close proximity in process industries, power generation and fuel storage facilities and confinement conditions such as tunnels, which can lead to a considerable alteration in fire characteristics and safety design. The topic is of significant importance to the fire safety research because there is little work in the literature that investigates the case of interacting fires, which have a destructive potential. In this work, we study the effects of an adjacent fire source on the b...
A data-driven approach for predicting solar energy potential of buildings in urban fabric
Duran, Ayça; Gürsel Dino, İpek; Department of Architecture (2022-7)
Energy-efficient buildings that use clean and sustainable energy sources are urgently needed to reduce the environmental impact of buildings and mitigate climate change in cities. Buildings have great potential in harvesting solar energy by their solar exposure capacity. Developments in PV technologies also encourage the integration of PV systems into architectural applications. However, urban contexts can limit solar energy generation capacity of buildings by shading building envelopes and reducing availab...
An approximate procedure for estimating the member demands in mid-rise reinforced concrete buildings
Akpinar, Ugur; Binici, Barış; Yakut, Ahmet; Tuncay, Kağan (Springer Science and Business Media LLC, 2020-01-01)
Seismic assessment of mid-rise reinforced concrete buildings is important for urban seismic risk reduction. Nonlinear time history analysis is the state-of-the-art analysis tool for this purpose. However, the number of such buildings may reach to several tens of thousands in metropolitan cities of earthquake prone countries. This necessitates faster yet sufficiently accurate assessment methods to mitigate the seismic risk. In this study, a simple and efficient approach is developed and validated for the ass...
Citation Formats
D. Ülgen, “An experimental study on the behavior of box-shaped culverts buried in sand under dynamic excitations,” Ph.D. - Doctoral Program, Middle East Technical University, 2011.