Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
An approximate procedure for estimating the member demands in mid-rise reinforced concrete buildings
Date
2020-01-01
Author
Akpinar, Ugur
Binici, Barış
Yakut, Ahmet
Tuncay, Kağan
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
6
views
0
downloads
Seismic assessment of mid-rise reinforced concrete buildings is important for urban seismic risk reduction. Nonlinear time history analysis is the state-of-the-art analysis tool for this purpose. However, the number of such buildings may reach to several tens of thousands in metropolitan cities of earthquake prone countries. This necessitates faster yet sufficiently accurate assessment methods to mitigate the seismic risk. In this study, a simple and efficient approach is developed and validated for the assessment of such buildings. The proposed method relies on estimating the reduced secant stiffness values for structural members based on elastic analysis. Afterwards, subsequent elastic analyses with the reduced stiffness values is conducted employing the equal displacement rule. The procedure is tested for twelve buildings with and without shear walls, and torsional irregularity. The member end chord rotation results obtained with the proposed procedure are compared with the mean results of eleven nonlinear time history analyses. It is found that the proposed procedure can estimate column and beam chord rotation demands with reasonable accuracy, significantly reducing the computational time.
Subject Keywords
Geotechnical Engineering and Engineering Geology
,
Geophysics
,
Civil and Structural Engineering
,
Building and Construction
URI
https://hdl.handle.net/11511/41030
Journal
Bulletin of Earthquake Engineering
DOI
https://doi.org/10.1007/s10518-020-00956-3
Collections
Department of Civil Engineering, Article