Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Poly(L-Lactic acid) (PLLA)-based meniscus tissue engineering
Download
index.pdf
Date
2011
Author
Bahçecioğlu, Gökhan
Metadata
Show full item record
Item Usage Stats
227
views
92
downloads
Cite This
Meniscus is a fibrocartilaginous tissue which plays an important role in joint stability, lubrication, and load bearing and transmission. Meniscal tears are commonly encountered in sports activities, or caused by degeneration of the cartilage with ageing. They lead to pain, loss of work, disturbed biomechanics of the knee and inability to walk or even move the legs. As the meniscal tissue is avascular in the inner portion, injury to this part does not heal by itself, and therefore treatments are needed. In some cases when complex tears occur, the tissue cannot be successfully treated with the conventional methods. Tissue engineering appears to be a promising alternative to treat such complex tears. It includes the application of cells on scaffolds (or cell carriers), and provision of bioactive agents to the site of injury in order to regenerate the damaged tissue. The cells and the bioactive agents are involved in the synthesis of the new tissue, while the scaffold acts as a support to guide the cells until the new tissue is formed, and it is slowly absorbed by the body leaving the new tissue behind. Thus, a natural tissue is generated at the end. Few studies have been reported on the tissue engineering of meniscus, but neither of them was able to completely mimic the meniscus structure, nor could they succeed in constructing scaffolds with sufficiently high tensile properties. In the current in vitro study, a novel 3D construct was proposed, in which the natural tissue is perfectly mimicked. The 3D construct consisted of aligned collagen fibers embedded within a foam network which stabilizes the structure. The foam was prepared by freezing a polymer solution with a certain concentration, and lyophilizing it. Aligned fibers were aimed to improve the tensile properties. The construct was impregnated in alginate gel, which was then crosslinked, to improve the compressive properties. The foam was prepared from (poly(L-lactic acid)/poly(lactic-co-glycolic acid) (PLLA/PLGA) solutions of various concentrations (2%, 2.5%, 3%, and 4% w/v) and at different freezing temperatures (-20oC or -80oC) to select the best preparation condition. After analysis of the microstructure and mechanical properties, foams prepared from 3% polymer solution frozen at -20oC were found to be the most appropriate for use as scaffold for the 3D construct, since they had large pores, high and interconnected porosity, as well as high mechanical strength. The 3D constructs were seeded with human meniscus cells and incubated for 21 days. Cell behavior on the constructs was examined. Cell attachment and proliferation was found to be better with the constructs not coated with alginate. However, the constructs coated with alginate demonstrated higher compressive strength. It was also found that incorporation of collagen fibers significantly improved the tensile properties. All the constructs were shown to lead to the production of extracellular components specific for fibrocartilages, and thus it was concluded that they were promising for use in meniscal replacement.
Subject Keywords
Meniscus (Anatomy).
,
Tissue engineering.
URI
http://etd.lib.metu.edu.tr/upload/12613968/index.pdf
https://hdl.handle.net/11511/21256
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Collagen Based Multilayer Scaffolds for Meniscus Tissue Engineering: In Vivo Test Results. Biomater Med Appl 2: 1
Albana Ndreu, Halili; Karahan, Siyami; Kürüm, Barış; Hasırcı, Vasıf Nejat (2018-04-01)
Meniscus is an important component of the knee joint since it performs several crucial functions such as shock absorption, load bearing and transmission, maintenance of joint stability, and lubrication. The results of common meniscal injury repair approaches are not fully satisfactory with low mechanical properties and long regeneration times. A 3D collagen-based construct consisting of multilayers of lyophilized sponges separated by electrospun fibrous mats was prepared previously to serve as a substitute ...
Collagen-based meniscus tissue engineering: design and application
Halili Ndreu, Albana; Hasırcı, Nesrin; Hasırcı, Vasıf Nejat; Department of Biotechnology (2011)
Meniscus is a wedge shaped structure, with a convex base attached to a flat tibial surface, and with a concave femoral surface, on which femur and tibia articulate. It has several functions including joint lubrication, shock absorption, load transmission and joint stability. Various methods were tried to treat meniscal tears but each has its own drawbacks. Tissue engineering seems to be a promising solution that avoids all the problems associated with the other approaches. In this study, a three dimensional...
Acoustic radiation from a fluid-filled, subsurface vascular tube with internal turbulent flow due to a constriction
Yazıcıoğlu, Yiğit; Spohnholtz, Todd; Martin, Bryn; Loth, Francis; Bassiouny, Hisham S. (Acoustical Society of America (ASA), 2005-08-01)
The vibration of a thin-walled cylindrical, compliant viscoelastic tube with internal turbulent flow due to an axisymmetric constriction is studied theoretically and experimentally. Vibration of the tube is considered with internal fluid coupling only, and with coupling to internal-flowing fluid and external stagnant fluid or external tissue-like viscoelastic material. The theoretical analysis includes the adaptation of a model for turbulence in the internal fluid and its vibratory excitation of and interac...
Effect analysis of bearing and interface dynamics on tool point FRF for chatter stability in machine tools by using a new analytical model for spindle-tool assemblies
Ertuerk, A.; Özgüven, Hasan Nevzat; Budak, E. (Elsevier BV, 2007-01-01)
Self-excited vibration of the tool, regenerative chatter, can be predicted and eliminated if the stability lobe diagram of the spindle-holder-tool assembly is known. Regardless of the approach being used, analytically or numerically, forming the stability lobe diagram of an assembly implies knowing the point frequency response function (FRF) in receptance form at the tool tip. In this paper, it is aimed to study the effects of spindle-holder and holder-tool interface dynamics, as well as the effects of indi...
Fatigue behavior of Ti-6Al-4V foams processed by magnesium space holder technique
Asik, E. Erkan; Bor, Sakir (2015-01-05)
Porous Ti-6Al-4V alloys are widely used in the biomedical applications for hard tissue implantation due to their elastic moduli being close to that of bone. In this study, porous Ti-6Al-4V alloys were produced with a powder metallurgical process, space holder technique, where magnesium powders were utilized to generate porosity in the range of 51-65 vol%. The production of porous Ti-6Al-4V alloys was composed of three steps. Firstly, spherical Ti-6Al-4V powders with an average size of 55 mu m were mixed wit...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
G. Bahçecioğlu, “Poly(L-Lactic acid) (PLLA)-based meniscus tissue engineering,” M.S. - Master of Science, Middle East Technical University, 2011.