Finite element analysis of laboratory model experiments on behavior of shallow foundations under general loading

Download
2012
Oktay, Hasan Emre
In this study, a series of laboratory model experiments carried on shallow foundations is intended to be simulated through numerical modeling. The laboratory model tests were conducted by Fukui et al. (2005), over square shaped, shallow surfacial foundations located over air-dried Toyoura sand. Tests included centered vertical and combined loading cases on sand with 60% and 80% relative densities. Plastic limit loads obtained from numerical analyses and available analytical solutions in literature are compared to the laboratory test results and the differences are discussed. Employment of Mohr - Coulomb yield criterion and linear elasticity, resulting in linear elastic perfectly plastic constitutive law, is one of the most common practices in modeling geotechnical problems. Accuracy of this approach for the modeled experiments is judged by comparison of analyses results with experimental findings and solutions in literature. Finite element method is utilized for modeling purposes, with Mohr-Coulomb yield criterion and linear elastic behavior. Abaqus 6-10.2 is selected as the analysis software, and two and three dimensional models are used in the analyses. Analyses, the results of which are compared with experimental findings, aim employment of associated flow rule. Additional analyses are conducted with varying dilation angles in order to examine the influence of unassociated flow rule on eccentric and concentric loading results. Differences between the results of numerical analyses and experimental observations varied between 2% and 34%. Main reason of the difference is attributed to employed soil behavior modeling approach in analyses and the eccentric placement of model weight in monotonic horizontal loading experiments. In the case when this eccentric placement is accounted for in numerical models, it is seen that the difference diminished to vary between 8% and 18%, and order of the difference was similar for similar experiment cases. Therefore, based on this condition, it is seen that results of the modeled experiments are consistent, while in general they are somewhat higher than the results obtained from analyses and solutions in literature. Difference between the results of analyses and average of selected solutions in literature in both cases is at most 9%. Finite element method employing Mohr-Coulomb failure criterion could provide results in close agreement with solutions in literature that inherently assume Mohr-Coulomb failure criterion as well. However, the same accuracy could not be obtained for experiments due to uncertainties involved in the material properties as well as the insufficiencies of the model to represent the behavior precisely. Finite element method has the potential to consider more advanced material models. Nonetheless, employment of Mohr-Coulomb failure criterion provides results with sufficient accuracy for most cases.

Suggestions

A normalized set of force and permeance data for doubly-salient magnetic geometries
Mahariq, İbrahim; Ertan, Hulusi Bülent; Department of Electrical and Electronics Engineering (2009)
In this study, a model is developed to represent doubly-salient magnetic circuits and to fit finite element analysis for the aim of obtaining a set of normalized normal force, tangential force, and permeance variation data. To obtain the desired data FE field solution method is used. The reliability of finite element results have been verified by three steps; first, comparing the numerical results with analytically calculated permeance, second, by solving two switch reluctance motors and comparing the resul...
Numerical investigation of non-homogenous plastic deformation in quenching process
Gür, Cemil Hakan (2001-12-01)
The aim of the study is to investigate the evolution of internal stresses and non-homogeneous plastic deformation in quenching by numerical simulation. This paper presents the finite element model of quenching of axisymmetric components and the results of various numerical experiments. In the simulation, first the temperature distribution is determined as a function of geometry and time, Then. a model is described to give the volume fractions of phases as a function of time for the corresponding cooling cur...
Three dimensional finite element modeling for the laterally loaded passive pile behavior
Ekici, Anıl; Huvaj Sarıhan, Nejan; Department of Civil Engineering (2013)
In this study, some of the factors affecting the slope stabilizing pile response have been investigated by means of three dimensional finite element solution using PLAXIS 3D software. Three full scaled field experiments were modeled for the verification of the proposed 3D models. It was concluded that PLAXIS 3D can successfully predict the measured pile deflection and force distributions. Afterwards, a parametric study was carried out. Two series of analyses (i) studying the effect of the pile embedment dep...
Experimental and numerical investigation of formation damage caused by drilling fluids
İşcan, Abdullah Gürkan; Kök, Mustafa Verşan; Department of Petroleum and Natural Gas Engineering (2006)
In this thesis, permeability impairment caused by drilling fluids and subsequent cleaning and permeability enhancement by back-flow were investigated by means of experimental and simulation studies. Permeability damage caused by three different drilling fluids was measured experimentally by core tests as a function of the filtration pressure and analyzed using a simulator describing the fines migration and retention in porous media. The pore throat plugging criteria for the three drilling fluids were determ...
Numerical Modeling of Backfilling Process around Monopiles
Baykal, Cüneyt; Fuhrman, David R; Jacobsen, Niels G; Fredsoe, Jorgen (2014-06-20)
This study presents a three-dimensional (3D) numerical modeling study on the backfilling process around monopiles. The numerical model utilized in the study is based on that given by Jacobsen (2011). It is composed of two main modules. The first module is the hydrodynamic model where the fluid flow conditions around the structure and near the bed are solved. The second module is the morphologic model where the sediment transport rates over the bed and around the structure are obtained and used in updating b...
Citation Formats
H. E. Oktay, “Finite element analysis of laboratory model experiments on behavior of shallow foundations under general loading,” M.S. - Master of Science, Middle East Technical University, 2012.