Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Generalized pushover analysis
Download
index.pdf
Date
2012
Author
Alıcı, Fırat Soner
Metadata
Show full item record
Item Usage Stats
178
views
111
downloads
Cite This
Nonlinear response history analysis is considered as the most accurate analytical tool for estimating seismic response. However, there are several shortcomings in the application of nonlinear response history analysis, resulting from its complexity. Accordingly, simpler approximate nonlinear analysis procedures are preferred in practice. These procedures are called nonlinear static analysis or pushover analysis in general. The recently developed Generalized Pushover Analysis (GPA) is one of them. In this thesis study, GPA is presented and evaluated comparatively with the nonlinear time history analysis and modal pushover analysis. A generalized pushover analysis procedure was developed for estimating the inelastic seismic response of structures under earthquake ground excitations (Sucuoğlu and Günay, 2011). In this procedure, different load vectors are applied separately to the structure in the incremental form until the predefined seismic demand is obtained for each force vector. These force vectors are named as generalized force vectors. A generalized force vector is a combination of modal forces, and simulates the instantaneous force distribution on the system when a given response parameter reaches its maximum value during the dynamic response. In this method, the maximum interstory drift parameters are selected as target demand parameters and used for the derivation of generalized force vectors. The maximum value of any other response parameter is then obtained from the analysis results of each generalized force vector. In this way, this procedure does do not suffer from the statistical combination of inelastic modal responses. It is further shown in this study that the results obtained by using the mean spectrum of a set of ground motions are almost identical to the mean of the results obtained from separate generalized pushover analyses under each ground motion in the set. These results are also very close to the mean results of nonlinear response history analyses. A practical implementation of the proposed generalized pushover analysis is also developed in this thesis study where the number of pushovers is reduced in view of the number of significant modes contributing to seismic response. It has been demonstrated that the reduced generalized pushover analysis is equally successful in estimating maximum member deformations and member forces as the full GPA under a ground excitation, and sufficiently accurate with reference to nonlinear response history analysis.
Subject Keywords
Seismic prospecting.
,
Earthquake engineering.
,
Earthquake hazard analysis.
URI
http://etd.lib.metu.edu.tr/upload/12614434/index.pdf
https://hdl.handle.net/11511/21611
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Generalized pushover analysis for unsymmetrical plan buildings
Kaatsız, Kaan; Sucuoğlu, Haluk; Department of Civil Engineering (2012)
Nonlinear response history analysis is regarded as the most accurate analysis procedure for estimating seismic response. Approximate analysis procedures are also available for the determination of seismic response and they are preferred over nonlinear response history analysis since much less computational effort is required and good response prediction is achieved by employing rather simple concepts. A generalized pushover analysis procedure is developed in this thesis study as an approximate analysis tool...
An equivalent linearization procedure for seismic response prediction of mdof systems
Günay, Mehmet Selim; Sucuoğlu, Haluk; Department of Civil Engineering (2008)
Nonlinear response history analysis is accepted as the most accurate analytical tool for seismic response determination. However, accurate estimation of displacement responses using conceptually simple, approximate analysis procedures is preferable, since there are shortcomings in the application of nonlinear response history analysis resulting from its complexity. An equivalent linearization procedure, which utilizes the familiar response spectrum analysis as the analysis tool and benefits from the capacit...
GIS based seismic hazard mapping of Turkey
Yunatcı, Ali Anıl; Çetin, Kemal Önder; Rojay, Fuat Bora; Department of Civil Engineering (2010)
Efficiency of probabilistic seismic hazard analysis mainly depends on the individual successes of its complementing components; such as source characterization and ground motion intensity prediction. This study contributes to major components of the seismic hazard workflow including magnitude – rupture dimension scaling relationships, and ground motion intensity prediction. The study includes revised independent models for predicting rupture dimensions in shallow crustal zones, accompanied by proposals for ...
Generalized force vectors for multi-mode pushover analysis
Sucuoğlu, Haluk (Wiley, 2011-01-01)
A generalized pushover analysis (GPA) procedure is developed for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure comprises applying different generalized force vectors separately to the structure in an incremental form with increasing amplitude until a prescribed seismic demand is attained for each generalized force vector. A generalized force vector is expressed as a combination of modal forces, and simulates the instantaneous force distribution ac...
Practical tools for ranking and selection of groundmotion prediction equations (GMPEs) for probabilistic seismic hazard assessment and development of a regional GMPE
Kale, Özkan; Akkar, Sinan; Danciu, Laurentiu; Department of Civil Engineering (2014)
This study starts summarizing the progresses in ground-motion databases and ground-motion models in pan-European region and consequent seismic hazard comparisons conducted for individual local and global predictive models. Then, the study presents the compilation of the Middle East region and Turkish ground-motion databases with principle seismological features to be mainly used in predictive model selection process in these regions. In the following step, using a high standard subset of the Middle East gro...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. S. Alıcı, “Generalized pushover analysis,” M.S. - Master of Science, Middle East Technical University, 2012.