Generalized pushover analysis for unsymmetrical plan buildings

Download
2012
Kaatsız, Kaan
Nonlinear response history analysis is regarded as the most accurate analysis procedure for estimating seismic response. Approximate analysis procedures are also available for the determination of seismic response and they are preferred over nonlinear response history analysis since much less computational effort is required and good response prediction is achieved by employing rather simple concepts. A generalized pushover analysis procedure is developed in this thesis study as an approximate analysis tool for estimating the inelastic seismic response of structures under earthquake ground excitations. The procedure consists of applying generalized force vectors to the structure in an incremental form until a prescribed target interstory drift demand is achieved. Corresponding generalized force vectors are derived according to this target drift parameter and include the contribution of all modes. Unlike many approximate analysis procedures, response of the structure is directly obtained from generalized pushover analysis results without employing a modal combination rule, eliminating the errors cultivating from these methods. Compared to nonlinear response history analysis, generalized pushover analysis is less demanding in computational effort and its implementation is simpler relative to other approximate analysis procedures. It is observed that the proposed analysis procedure yields results accurately in comparison to the other nonlinear pushover analysis methods. Accordingly it can be suggested as a convenient and sound analysis tool.

Suggestions

An equivalent linearization procedure for seismic response prediction of mdof systems
Günay, Mehmet Selim; Sucuoğlu, Haluk; Department of Civil Engineering (2008)
Nonlinear response history analysis is accepted as the most accurate analytical tool for seismic response determination. However, accurate estimation of displacement responses using conceptually simple, approximate analysis procedures is preferable, since there are shortcomings in the application of nonlinear response history analysis resulting from its complexity. An equivalent linearization procedure, which utilizes the familiar response spectrum analysis as the analysis tool and benefits from the capacit...
Generalized pushover analysis
Alıcı, Fırat Soner; Sucuoğlu, Haluk; Department of Civil Engineering (2012)
Nonlinear response history analysis is considered as the most accurate analytical tool for estimating seismic response. However, there are several shortcomings in the application of nonlinear response history analysis, resulting from its complexity. Accordingly, simpler approximate nonlinear analysis procedures are preferred in practice. These procedures are called nonlinear static analysis or pushover analysis in general. The recently developed Generalized Pushover Analysis (GPA) is one of them. In this th...
Influence of idealized pushover curves on seismic response
Kadaş, Koray; Yakut, Ahmet; Department of Civil Engineering (2006)
Contemporary approach performance based engineering generally relies on the approximate procedures that are based on the use of capacity curve derived from pushover analysis. The most important parameter in the displacement-based approach is the inelastic displacement demand computed under a given seismic effect and the most common procedures employed for this estimation; the Capacity Spectrum Method and the Displacement Coefficient Method are based on bi-linearization of the capacity curve. Although there ...
Correlation of deformation demands with ground motion intensity
Yılmaz, Hazım; Yakut, Ahmet; Department of Civil Engineering (2007)
A comprehensive study has been carried out to investigate the correlation between deformation demands of frame structures and a number of widely cited ground motion intensity parameters. Nonlinear response history analyses of single-degree-of-freedom (SDOF) and multi-degree-of-freedom (MDOF) models derived from sixteen reinforced concrete frames were carried out under a set of eighty ground motion records. The frames were selected to portray features of typical low-to-mid rise reinforced concrete structures...
Nonlinear analysis of R/C low-rise shear walls
Mansour, Mohamad Y.; Dicleli, Murat; Lee, Jung Yoon (SAGE Publications, 2004-08-01)
An analysis method for predicting the response of low-rise shear walls under both monotonic and cyclic loading is presented in this paper. The proposed analysis method is based on the softened truss model theory but utilizes newly proposed cyclic constitutive relationships for concrete and steel bars obtained from cyclic shear testing. The successfulness of the analysis method, when combined with new materials constitutive relationships, is checked against the test results of 33 low-rise shear walls reporte...
Citation Formats
K. Kaatsız, “Generalized pushover analysis for unsymmetrical plan buildings,” M.S. - Master of Science, Middle East Technical University, 2012.