Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Influence of idealized pushover curves on seismic response
Download
index.pdf
Date
2006
Author
Kadaş, Koray
Metadata
Show full item record
Item Usage Stats
374
views
298
downloads
Cite This
Contemporary approach performance based engineering generally relies on the approximate procedures that are based on the use of capacity curve derived from pushover analysis. The most important parameter in the displacement-based approach is the inelastic displacement demand computed under a given seismic effect and the most common procedures employed for this estimation; the Capacity Spectrum Method and the Displacement Coefficient Method are based on bi-linearization of the capacity curve. Although there are some recommendations for this approximation, there is a vital need for rational guidelines towards the selection of the most appropriate method among several alternatives. A comprehensive research has been undertaken to evaluate the influence of several existing alternatives used for approximating the capacity curve on seismic demands. A number of frames were analyzed under a set of 100 ground motions employing OpenSees. In addition, the pushover curves obtained from nonlinear static analyses were approximated using several alternatives and the resulting curves were assigned as the force-deformation relationships of corresponding equivalent single-degree-of-freedom systems. These simplified systems were later analyzed to compute the approximate seismic response parameters. Using the results of the complex and simplified analyses, the performance of each approximation method was evaluated in estimating the ‘exact’ inelastic deformations of the multi-degree-of-freedom systems at various degrees of inelasticity. Dependency of the errors on ductility, strength reduction factor and period was also investigated. The interpretations made and the conclusions drawn in this study is believed to clarify the rationality and accuracy of selecting the appropriate idealization of the capacity curve.
Subject Keywords
Structural Engineering (General)
URI
http://etd.lib.metu.edu.tr/upload/3/12607761/index.pdf
https://hdl.handle.net/11511/16336
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Meta-Modeling of Complexity-Uncertainty-Performance Triad in Construction Projects
Dikmen Toker, İrem; Erol, Huseyin; Birgönül, Mustafa Talat (Informa UK Limited, 2020-07-01)
Although conceptualized in various ways within the project management literature, complexity is usually identified as one of the drivers of uncertainty, which may result in deviations from the expected project performance in the construction industry. Effective strategies to manage risk and complexity can only be formulated by understanding the complexity-uncertainty-performance triad in construction projects and modeling the non-linear interactions between these factors. In this study, a meta-modeling appr...
Investigation of relationship between aggregate shape parameters and concrete strength using imaging techniques
Özen, Murat; Güler, Murat; Department of Civil Engineering (2007)
In this study, relationships between aggregate shape parameters and compressive strength of concrete were investigated using digital image processing and analysis methods. The study was conducted based on three mix design parameters, gradation type, aggregate type and maximum aggregate size, at two levels. A total of 40 cubic concrete specimens were prepared at a constant water-cement ratio. After the compressive strength tests were performed, each specimen was cut into 4 equal pieces in order to obtain the...
Evaluation of seismic response modification factors for steel frames by non-linear analysis
Bakır, Serhan; Yılmaz, Çetin; Department of Civil Engineering (2006)
In this study steel framing systems are investigated with regards to their lateral load carrying capacity and in this context seismic response modification factors of individual systems are analyzed. Numerous load resisting layouts, such as different bracing systems and un-braced moment resisting frames with various bay and story configurations are designed and evaluated in a parametric fashion. Three types of beam to column connection conditions are incorporated in evaluation process. Frames, designed acco...
Development of Fragility Curves for Single-Column RC Italian Bridges Using Nonlinear Static Analysis
Perdomo, Camilo; Monteiro, Ricardo; Sucuoğlu, Haluk (Informa UK Limited, 2020-05-07)
The main objective of this study is to assess the accuracy and suitability of Nonlinear Static Procedures (NSPs) in the development of analytical damage fragility curves for seismic risk assessment of large portfolios of Reinforced Concrete (RC) bridges. Seven NSP approaches, from widely used single-mode conventional pushover-based approaches to the more rigorous multi-mode conventional or adaptive pushover-based procedures are implemented. By systematically comparing fragility curve estimations in terms of...
Dynamic pull analysis for estimating seismic response
Değirmenci, Can; Sucuoğlu, Haluk; Department of Civil Engineering (2006)
The analysis procedures employed in earthquake engineering can be classified as linear static, linear dynamic, nonlinear static and nonlinear dynamic. Linear procedures are usually referred to as force controlled and require less analysis time and less computational effort. On the other hand, nonlinear procedures are referred to as deformation controlled and they are more reliable in characterizing the seismic performance of buildings. However, there is still a great deal of unknowns for nonlinear procedure...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
K. Kadaş, “Influence of idealized pushover curves on seismic response,” M.S. - Master of Science, Middle East Technical University, 2006.