The Development of molecular genetic tools for detection of Salmonella pathogen

Download
2012
Gökduman, Kurtuluş
Although traditional microbiological methods are accepted standard for Salmonella detection, they are labor intensive and time consuming. Therefore, for food industry and public health, finding sensitive and rapid methods is required. As a rapid and reliable tool, Real-Time PCR is one of the most common methods in molecular detection and research area. The aim of the current study is to develop rapid, sensitive and quantitative Salmonella detection method using Real-Time PCR technique based on inexpensive, easy to produce, convenient and standardized plasmid based positive control for the first time. To achieve this, two plasmids were constructed as reference molecules by cloning two most commonly used Salmonella specific target regions ‘invA and ttrRSBC’ into them. Standard curves were constructed for the plasmids and reproducibility, PCR efficiency, amplification efficiency values were calculated. To illustrate the applicability of the developed method, enriched (as used commonly for Salmonella detection with Real-Time PCR) 105 to 100 CFU/ml level (estimated by standard plate counts before enrichment) S. Typhimurium ATCC 14028 cultures were tried to detect and quantify, also compared with traditional culture method. In addition, detection limits of the developed technique were determined by serial dilution of DNA extracted from 105 CFU/ml level. The results revealed much faster detection ability of the developed plasmid based Salmonella detection method (in comparison to traditional culture method, ISO 6579:2004) allowing quantitative evaluation with perfect reproducibility, sensitivity (except for lower concentrations for invA target), detection limit, PCR efficiency, amplification efficiency for both invA and ttrRSBC targets. The detection and quantification ability of the method developed by using S. Typhimurium ATCC 14028 cultures were tested also with 15 Salmonella species using milk as a representative food. The results also revealed much faster (in comparison to traditional culture method, ISO 6579:2004) quantitative detection ability of the developed method. Thus, the developed method has great potential to be used in food industry for rapid and quantitative Salmonella detection.

Suggestions

Reconstruction of the temporal signaling network in salmonella infected human cells
Budak, Güngör; Aydın Son, Yeşim; Tunçbağ, Nurcan; Department of Bioinformatics (2016)
Salmonella enterica is a bacterial pathogen whose mechanism of infection is usually through food sources. The pathogen proteins are translocated into the host cells to change the host signaling mechanisms either by activating or inhibiting the host proteins. In order to obtain a more complete view of the biological processes and the signaling networks and to reconstruct the temporal signaling network of the human host, we have used two network modeling approaches, the Prize-collecting Steiner Forest (PCSF) ...
Genomic characterization of cephalosporin, quinolone and macrolide resistance in Salmonella enterica
Konyali, Diala; Soyer, Yeşim; Bayramoğlu, Tuba Hande; Department of Biotechnology (2022-1-12)
Salmonella infections are considered a significant burden in developing and developed countries. Each year, Non-Typhoidal Salmonella (NTS) causes more than 90 million cases of gastroenteritis, 85% of which are food-borne. Salmonellosis is usually self-limiting in healthy adults but might be severe in risk groups. Fluoroquinolones, macrolides, and cephalosporins are recommended when antimicrobial treatment is necessary. However, Salmonella is increasingly showing resistance to these antimicrobials by chromos...
The use of microfluidization for the production of xanthan and citrus fiber-based gluten-free corn breads
OZTURK, Oguz Kaan; Mert, Behiç (2018-10-01)
Corn gluten meal is an underutilized byproduct due to its hydrophobic nature although it contains high amount of protein. The primary objectives of this study were to enhance the water holding capacity of this protein-rich byproduct with microfluidization technique and use it in bread-making formulations instead of gluten with the addition of different supplements. The increase in stability, surface area, and consequently water holding capacity with microfluidization resulted in the formation of compatible ...
Isolation and Characterization of Salmonella Bacteriophages
DENİZ, Aysu; Soyer, Yeşim; Department of Food Engineering (2022-2-03)
Numerous foodborne infections and outbreaks are associated with Salmonella which makes it a challenge in terms of human health and economy. Therefore, reducing the prevalence of Salmonella in food and food processing areas is of great importance. Antibiotics are the substances that are commonly used in various stages of food production in order to fight against Salmonella. However, concerns related with the antibiotic use like antibiotic resistance give rise to pursuit of safer methods to eliminate Salmonel...
The effects of microfluidization on rheological and textural properties of gluten-free corn breads
OZTURK, Oguz Kaan; Mert, Behiç (2018-03-01)
This study presents the potential of microfluidization as a value adding process to corn gluten meal (CGM), which is often used as animal feed and is underutilized in food industry. In this study, we aimed to improve water holding ability of corn gluten and to investigate possibility of using this zein-rich byproduct as the main ingredient in gluten-free bread formulations. For this reason, microfluidization as a milling process for CGM, and its effects on rheological and textural properties of gluten-free ...
Citation Formats
K. Gökduman, “The Development of molecular genetic tools for detection of Salmonella pathogen,” Ph.D. - Doctoral Program, Middle East Technical University, 2012.