Macromolecular characterization of apidose tissues in inbred obese mouse models

Download
2012
Şen, İlke
Obesity is a metabolic disorder that results in elevated levels of free fatty acids and triglycerides in the blood circulation, which further leads to accumulation of lipids within various tissues. Like in other similar metabolic disorders, obesity is thought to be originated from structural and regulatory changes in macromolecular assemblies. This current study aims to investigate the effects of obesity on macromolecular alterations in order to characterize Berlin fat mouse inbred (BFMI) lines which arenew models for the obesity research that may contribute to understanding of spontaneous obesity without induction of a high fat diet. Attenuated Total Reflectance - Fourier Transform Infrared (ATR-FTIR) spectroscopy was used to characterize content and structure of macromolecules in male and female control (DBA/2J) and BFMI lines; namely BFMI856, BFMI860 and BFMI861, in two different adipose tissues; inguinal fat (IF) which is subcutaneous adipose tissue (SAT), gonadal fat (GF) which is visceral adipose tissue (VAT). Structural and compositional alterations in proteins, lipids, saturated and unsaturated lipid contents, nucleic acid, collagen and glycogen contents and variations in the lipid chain length were determined. BFMI860 and BFMI861 lines were found to be the most affected lines since they showed the indications of lipid peroxidation and insulin resistance more severely as they had lower glycogen content in all tissues and lower unsaturated lipid content especially in IF adipose tissues. Moreover, structural changes in lipids were observed especially in male GF adipose tissues of BFMI856 and BFMI861 lines. Protein content decreased significantly specifically in female IF adipose tissues but no change was observed in the structure. Furthermore, BFMI852 line was found to be affected different than other lines and had an effect on especially female IF. To conclude, obesity induced changes differ in BFMI lines according to the gender, adipose tissue type and distinctness in the strains.
Citation Formats
İ. Şen, “Macromolecular characterization of apidose tissues in inbred obese mouse models,” M.S. - Master of Science, Middle East Technical University, 2012.