Development of a computer software for hydraulic design of small hydropower facility

Download
2012
Alimoğlu, Emir
Run-of-river type hydroelectrical power plants are the facilities that use only the available flow on the river without storing it to generate electrical energy. These kind of facilities are composed of structural components such as diversion weir, conveyance line, forebay, penstock and power house. In this thesis, a computer program called “MiniHEPP Hydraulic Design” is developed in order to perform the hydraulic design of run-of-river type hydropower plants. This program which runs under the Windows operating system, was developed in C# programming language. MiniHEPP Hydraulic Design is capable of performing hydraulic design of structural components of diversion weir with sidewise intake and overflow spillway, canal, forebay, and penstock. In addition, it can determine the optimum design discharge and penstock diameter of this type of hydropower plants.

Suggestions

Investigation of waterhammer problems in the penstocks of small hydropower plants
Çalamak, Melih; Bozkuş, Zafer; Department of Civil Engineering (2010)
Waterhammer is an unsteady hydraulic problem which is commonly found in closed conduits of hydropower plants, water distribution networks and liquid pipeline systems. Due to either a malfunction of the system or inadequate operation conditions, pipeline may collapse or burst erratically resulting in substantial damages, and human losses in some cases. In this thesis, time dependent flow situations in the penstocks of small hydropower plants are investigated. A software, HAMMER, that utilizes method of chara...
Evaluation of the efficiency increment potential for francis turbines using CFD analysis
Özcan, Arslan Ömür; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2016)
Francis turbine is a widely used hydraulic turbine in hydropower plants. This thesis analyzes a Francis turbine using Computational Fluid Dynamics (CFD) analysis and offers an improved design in case of energy production. First the initial performance of the turbine is analyzed using CFD analysis, possible cavitation regions are evaluated and design point of the turbine is found using hill chart method and compared with the on-site efficiency measurement results. Then an optimization study is held to improv...
Hydraulic characteristics of tyrolean weirs having steel racks and circular-perforated entry
Şahiner, Halit; Göğüş, Mustafa; Department of Civil Engineering (2012)
Tyrolean type water-intake structures are commonly used on mountain rivers to supply water to hydropower stations. The amount of water to be diverted from the main channel is the major concern in these kind of structures and should not be less than the design discharge. In this study a physical model of a Tyrolean type water-intake structure was built at the laboratory and the diverted flow from the main channel through the intake structure having steel racks and perforated plates of different types were me...
Prediction of downpull on high head gates using computational fluid dynamics
Uysal, Mehmet Akış; Köken, Mete; Aydın, İsmail; Department of Civil Engineering (2014)
For design purposes it is important to predict the downpull forces on the tunnel gates installed in the intake of a hydropower plant. In this study downpull forces on the gates are evaluated for different closure rates and for different gate lip geometries using computational fluid dynamics and the results are compared to an existing experimental study. Commercial ANSYS FLUENT software is used in the calculations. It is found that downpull coefficients obtained from computational study showed good agreement...
Computer Assisted Preliminary Design of Run-Of-River Plants
Alimoglu, Emir; Bozkuş, Zafer; Yanmaz, A. Melih (2014-10-01)
Run-of-river type hydroelectric power plants generate electrical energy by using a certain portion of the available flow in the river. In this study a computer program called MINI-HPD is developed to perform the hydraulic design of run-of-river plants. This program, which runs under the Windows operating system, is developed in C# programming language. MINI-HPD is capable of performing hydraulic design of structural components of diversion weir with lateral intake, overflow spillway, canal, forebay and pens...
Citation Formats
E. Alimoğlu, “Development of a computer software for hydraulic design of small hydropower facility,” M.S. - Master of Science, Middle East Technical University, 2012.