Organocatalytic resolution of racemic alpha azido ketones

Download
2012
Canbolat, Eylem
Chiral cyclic alpha azido ketones are very important compounds in organic chemistry. Because, the reduced forms of them are amino alcohols and these amino alcohols are interesting compounds for their biological activities. They have some pharmaceutical activities such as: potassium channel open up properties, treatment of central nervous system, antihypertensive properties, the agent of dopamin receptor activator, hypolipemic agent and dopamine agonist. These types of compounds have highly acidic alpha-protons, and many kinds of reactions can be performed with them. In this study, mainly, selective protonation of racemic compounds was performed with a new practical method and there are not so many examples related to deracemization in the literature. Alpha-azido derivatives of tetralone, indanone, chromanone, and thiochromanone structures are chosen as starting materials because of their importance for biological activities arising from their cyclic structures. Firstly, these α-azido compounds were synthesized according to literature. The acidic alpha-protons do not require strong bases. Their enantioselective deracemization and deracemization processes were screened by using Cinchona derivatives as organocatalysts. This screening process was monitored by chiral HPLC columns. The parameters such as catalyst loading, solvent, temperature, reaction time and additives were optimized to obtain high enantioselectivities up to 98%. In addition to deracemization reactions, Michael addition reactions were also performed by starting from α-azido chromanones. In these reactions different type of urea catalyst was used to activate the electrophilic part of trans-β-nitrostyrene compound. Again by controlling the temperature, time and catalyst loading, two diastereomers were formed and the screening process was monitored by chiral HPLC columns again. The Michael products were obtained in up to 94% ee and 75% yield.
Citation Formats
E. Canbolat, “Organocatalytic resolution of racemic alpha azido ketones,” M.S. - Master of Science, Middle East Technical University, 2012.