Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Three-dimensional flow solutions for non-lifting flows using fast multipole boundary element method
Download
index.pdf
Date
2012
Author
Karban, Uğur
Metadata
Show full item record
Item Usage Stats
162
views
72
downloads
Cite This
Driving aim of this study was to develop a solver which is accurate enough to be used in analysis and fast enough to be used in optimization purposes. As a first step, a three-dimensional potential flow solver is developed using Fast Multipole Boundary Element (FMBEM) for calculating the pressure distributions in non-lifting flows. It is a steady state solver which uses planar triangular unstructured mesh. After the geometry is introduced, the program creates a prescribed wake surface attached to the trailing edge(s), obtains a solution using panel elements on which the doublet and source strengths vary linearly. The reason for using FMBEM instead of classical BEM is the availability of solutions of systems having DOFs up to several millions within a few hours using a standard computer which is impossible to accomplish with classical BEM. Solutions obtained for different test cases are compared with the analytical solution (if applicable), the experimental data or the results obtained by JavaFoil.
Subject Keywords
Boundary element methods.
,
Fluid dynamics.
,
Wind turbines
URI
http://etd.lib.metu.edu.tr/upload/12615042/index.pdf
https://hdl.handle.net/11511/21957
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
INVESTIGATION AND OPTIMIZATION OF WINGLETS FOR HAWT ROTOR BLADES
Elfarra, Monier A.; Akmandor, I. Sinan; Sezer Uzol, Nilay (2011-03-25)
The main purpose of this paper is to optimize winglet geometry by using CFD with Genetic Algorithm and study its effects on power production. For validation and as a baseline rotor, the NREL Phase VI wind turbine rotor blade is used. The Reynolds-Averaged Navier-Stokes equations are solved and different turbulence models including the Spalart-Allmaras, k-epsilon Launder-Sharma, k-epsilon Yang-Shih and SST k-omega models are used and tested. The results of the power curve and the pressure distribution at dif...
Three dimensional hypersonic flow analysis around a reentry vehicle using navier‐stokes equations
Özgün, Muharrem; Eyi, Sinan (null; 2016-07-11)
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton/Newton-Gmres method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence model and one-equation Spalart-Allmaras turbulence model is us...
Shape optimization of wheeled excavator lower chassis
Özbayramoğlu, Erkal; Söylemez, Eres; Department of Mechanical Engineering (2008)
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by ...
Development of the professional driver behavior questionnaire
Yılmaz, Şerife; Öz, Bahar; Özkan, Türker; Department of Psychology (2018)
The aim of the present study was to develop a comprehensive scale measuring professional drivers' driver behaviors. For this reason, a semi-structured interview form was prepared and applied to different professional driver groups in order to collect behavioral examples displayed in traffic context (Study 1). These examples were grouped based on Reason's taxonomy of human error and Professional Driver, Driver Behavior Scale (PDBQ) was developed. PDBQ along with some other behavior scales such as ODBQ and DB...
A Hybrid State Estimator For Systems With Limited Number of PMUs
Göl, Murat (2015-05-01)
This paper is concerned about effective incorporation of a limited number of phasor measurement unit (PMU) measurements into the state estimation solution in order to enhance the state tracking accuracy and speed. This is particularly important for fast changing system conditions when rapid control action may be necessary based on the onset of voltage instability due to an unexpected event. Under such conditions, SCADA-based state estimators may be too slow in capturing the changes in system state due to th...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
U. Karban, “Three-dimensional flow solutions for non-lifting flows using fast multipole boundary element method,” M.S. - Master of Science, Middle East Technical University, 2012.