Three dimensional hypersonic flow analysis around a reentry vehicle using navier‐stokes equations

2016-07-11
Özgün, Muharrem
Eyi, Sinan
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. These equations are solved by using Newton/Newton-Gmres method. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence model and one-equation Spalart-Allmaras turbulence model is used to analyze hypersonic turbulent flow
Ninth International Conference on Computational Fluid Dynamics (ICCFD9), 11 - 15 Temmuz 2016

Suggestions

Atmosferik geçiş yapan araç etrafında navier- stokes denklemleri ile üç boyutlu hipersonik akış analizi
Özgün, Muharrem; Eyi, Sinan (2014-06-01)
Bu çalışmada hipersonik akışlar için kullanılabilecek isabetli ve etkin bir hesaplamalı akışkanlar dinamiği kodu geliştirilmesi amaçlanmaktadır. Akış analizi üç boyutlu Navier-Stokes denklemlerini temel almaktadır. Bu denklemler Newton metoduyla çözülmekte ve Jacobian matrislerini hesaplamak için analitik metot kullanılmaktadır. Model olarak alınan AS-202 Apollo uzay aracı geometrisi üzerinde akış parametreleri ve taşınımla ısı transferi analiz edilecektir. Ayrıca nümerik olarak stabil olan ve genelde hiper...
Hypersonic Flow Analysis of Re-entry Vehicles Using Three Dimensional Navier-Stokes Equations
Özgün, Muharrem; Eyi, Sinan (2015-07-27)
The purpose of this study is to develop an accurate and efficient CFD code that can be used in hypersonic flows. The flow analysis is based on the three dimensional Navier-Stokes equations. The analytical method is used to calculate the Jacobian matrix. Flow parameters and convective heat transfer are analyzed on Apollo AS-202 Command Module. Also, algebraic Baldwin-Lomax turbulence model is used to analyze hypersonic turbulent flow and the one-equation Spalart-Allmaras turbulence model will be implemented ...
Three-dimensional flow solutions for non-lifting flows using fast multipole boundary element method
Karban, Uğur; Uzol, Oğuz; Sezer Uzol, Nilay; Department of Aerospace Engineering (2012)
Driving aim of this study was to develop a solver which is accurate enough to be used in analysis and fast enough to be used in optimization purposes. As a first step, a three-dimensional potential flow solver is developed using Fast Multipole Boundary Element (FMBEM) for calculating the pressure distributions in non-lifting flows. It is a steady state solver which uses planar triangular unstructured mesh. After the geometry is introduced, the program creates a prescribed wake surface attached to the traili...
Adjoint Shape Optimization of Hypersonic Blunt BodiesIncluding the Effect of Graphite Ablation
Onay, Oğuz; Eyi, Sinan (2016-07-11)
One of the aims of the study, is to develop a numerical analysis tool for thermochemical ablation problem under hypersonic flow conditions. The other aim is to include the effects of the graphite ablation to a design optimization tool which uses adjoint method. In this study, IRV2 geometry is selected as the original geometry and optimization study is performed under reacting flow conditions. Drag coefficient of the geometry is reduced without increasing the stagnation point temperature. After the optimizat...
Aerothermodynamic shape optimization of hypersonic blunt bodies
Eyi, Sinan (2015-07-03)
The aim of this study is to develop a reliable and efficient design tool that can be used in hypersonic flows. The flow analysis is based on the axisymmetric Euler/Navier-Stokes and finite-rate chemical reaction equations. The equations are coupled simultaneously and solved implicitly using Newton's method. The Jacobian matrix is evaluated analytically. A gradient-based numerical optimization is used. The adjoint method is utilized for sensitivity calculations. The objective of the design is to generate a h...
Citation Formats
M. Özgün and S. Eyi, “Three dimensional hypersonic flow analysis around a reentry vehicle using navier‐stokes equations,” Istanbul, Turkey, 2016, vol. 9, Accessed: 00, 2021. [Online]. Available: http://iccfd9.itu.edu.tr/assets/pdf/papers/ICCFD9-2016-299.pdf.