Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Shape optimization of wheeled excavator lower chassis
Download
index.pdf
Date
2008
Author
Özbayramoğlu, Erkal
Metadata
Show full item record
Item Usage Stats
382
views
470
downloads
Cite This
The aim of this study is to perform the shape optimization of the lower chassis of the wheeled excavator. A computer program is designed to generate parametric Finite Element Analysis (FEA) of the structure by using the commercial program, MSC. Marc-Mentat. The model parameters are generated in the Microsoft Excel platform and the analysis data is collected by the Python based computer codes. The previously developed software Smart Designer [5], which performs the shape optimization of an excavator boom by using genetic algorithm, is modified and embedded in the designed program.
Subject Keywords
Mechanical engineering.
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/2/12609796/index.pdf
https://hdl.handle.net/11511/17755
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Finite element analysis of cornering characteristics of rotating tires
Erşahin, Mehmet Akif; Ünlüsoy, Yavuz Samim; Department of Mechanical Engineering (2003)
A finite element model is developed to obtain the cornering force characteristics for rotating pneumatic tires which combines accuracy together with substantially reduced computational effort. For cord reinforced rubber sections such as the body plies and breaker belts, continuum elements with orthotropic material properties are used to improve solution times. Drastic reductions in computational effort are then obtained by replacing the continuum elements with truss elements which do not require orientation...
Technological characteristics of abrick masonry structure and their relationship with the structural behaviour /
Aktaş, Yasemin Didem; Türer, Ahmet; Department of Archaeometry (2006)
The aim of this study is to investigate the physical and mechanical properties of construction materials in relation with the structural behaviour of a historic structure. Within this framework, the brick masonry superstructure of Tahir ile Zuhre Mescidi, a XIIIth century Seljuk monument in Konya was selected as case study. The study started with the determination of the basic physical (bulk density, effective porosity, water absorption capacity), mechanical (modulus of elasticity, uniaxial compressive stre...
Prediction of automobile tire cornering force characteristics by finite element modeling and analysis
Tönük, Ergin; Ünlüsoy, Yavuz Samim (2001-05-01)
In this study, a detailed finite element model of a radial automobile tire is constructed for the prediction of cornering force characteristics during the design stage. The nonlinear stress-strain relationship of rubber as well as a linear elastic approximation, reinforcement, large displacements, and frictional ground contact are modeled. Validity of various simplifications is checked. The cornering force characteristics obtained by the finite element tire model are verified on the experimental setup const...
Computation of drag force on single and close-following vehicles
Örselli, Erdem; Çetinkaya, Tahsin Ali; Department of Mechanical Engineering (2006)
In this study, application of computational fluid dynamics to ground vehicle aerodynamics was investigated. Two types of vehicle models namely, Ahmed Body and MIRA Notchback Body and their scaled models were used. A commercial software "Fluent" was used and the effects of implementing different turbulence models with wall functions were observed. As a result, an appropriate turbulence model was selected to use in the study. The drag forces, surface pressure distributions and wake formations were investigate...
Stress and fracture analysis of riveted joints
Keçelioğlu, Galip; Dağ, Serkan; Department of Mechanical Engineering (2008)
The objective of this study is to model and analyze a three dimensional single riveted lap joint (with and without a crack). By using finite element method, stress and fracture analyses are carried out under both the residual stress field and external tensile loading. Using a two step simulation, riveting process and subsequent tensile loading of the lap joint are simulated to determine the residual and overall stress state. Residual stress state due to riveting is obtained by interference and clamping misf...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
E. Özbayramoğlu, “Shape optimization of wheeled excavator lower chassis,” M.S. - Master of Science, Middle East Technical University, 2008.