Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Analysis of internal explosion and structural response to blast loading
Download
index.pdf
Date
2012
Author
Turcan, Uğur Can
Metadata
Show full item record
Item Usage Stats
3
views
12
downloads
In this thesis, blast overpressure due to internal explosion and dynamic response to this loading of the structure is analyzed. Firstly, theoretical backgrounds of computational procedures are presented. The basic principles of the hydrocodes and semi empirical methods are explained in detail. In the analysis of blast overpressure, partially vented structures are examined. Three different venting areas and three different charge weights are employed in the study. Peak pressure, time and impulse parameters are investigated in detail. Remapping and scaling laws are employed in order to reduce the computational cost. Experiments are carried out with similar conditions where pressure histories are recorded. Results from a semi empirical program and a commercial hydrocode are compared with the experimental data. After investigating the accuracy of blast calculation methods, dynamic response to blast loading is reviewed. For this purpose, two methods are used: The fully coupled method in hydrocode and the hybrid method - uniquely coupled semi empirical program and hydrocode. In the fully coupled method, hydrocode solves both blast and response; whilst in the hybrid method, hydrocode is used as the structural solver and semi empirical program is employed for the blast calculation. A deformable test setup is used to observe the response. Results from computational methods are compared with the experimental data. Finally, it can be concluded that semi empirical program and hydrocode are applicable to blast overpressure problems with partial venting. In addition, the methods introduced in dynamic response section can be used as preliminary analysis tools in the prediction of structural response to blast loading. Also, it is shown that the hybrid method is much faster than the fully coupled method in hydrocode.
Subject Keywords
Blast effect.
,
Shock (Mechanics).
,
Scaling laws (Statistical physics).
URI
http://etd.lib.metu.edu.tr/upload/12615245/index.pdf
https://hdl.handle.net/11511/22238
Collections
Graduate School of Natural and Applied Sciences, Thesis