Pumping chamber design in diode pumped solid-state lasers for maximum system efficiency and minimum optical distortion

Download
2013
Zengin, Kubilay
The beam quality and the system efficiency of a diode-pumped solid-state laser source are directly related to the thermal profile inside the laser crystal. The thermal profile in a laser crystal should be made uniform in order to reduce the negative effects of the thermal lens. However, the absorbed pump profile that forms a uniform thermal profile inside the gain medium may adversely affect the system efficiency. In this thesis, a computational and empirical method was developed for designing pumping chambers that results in a suitable thermal profile inside the gain medium, and thus desired laser beam quality was achieved while keeping the system efficiency at an acceptable level. Accomplishment of this thesis work will lead to the design of pumping chambers and resonators in high power laser systems operating at even higher thermal loads.

Suggestions

Simulation of thermal, mechanical and optical behavior of yag ceramics with increasing Nd3+ concentration under lasing conditions.
Kenar, Necmettin; Öke, Gülay; Department of Physics (2007)
Two-dimensional thermal, mechanical and optical simulations are carried out to investigate the effect of Nd3+ concentration on thermal, mechanical and optical behavior of Nd:YAG ceramic laser materials under continuous wave laser operation. In the analyses, rods are pumped longitudinally with laser diodes, in three, six, nine and twelve fold structures. Rods having diameters of 3 and 6 mm are pumped with 808 nm and 885 nm sources separately having Nd+3 concentrations of 0.6, 1, 2, 3, 4 and 6 at. %. Total ab...
Thermal management of fiber-coupled-diode pumped tm:ylf laser crystal slab
Baltacıoğlu, Mert; Okutucu Özyurt, Hanife Tuba; Department of Mechanical Engineering (2014)
In end-pumped solid-state lasers, thermal effects in the lasing medium are important factors in determining the limits of the maximum achievable power and the laser beam quality. In the present study, thermal effects such as the maximum and average temperatures, thermal lens radius and thermally induced stress on a fiber-coupled-diode pumped Thulium(Tm)-doped-YLiF_4 (YLF) laser crystal slab with unity aspect ratio are investigated for different cooling geometries. The thermal effects are simulated and compa...
Power stabilization of diode pumped solid state lasers by means of adaptive control of drive current
Şentürk, Tayfun; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2019)
Lasers provide precision and sensitivity for various applications. However, some fundamental properties make lasers very susceptible to external changes. When stability of laser parameters is required the traditional approach is to stabilize the working environment, such as strict temperature and climate control, mechanical isolation as well as damping of any vibration. This traditional approach is very difficult to implement in harsh industrial environments and almost impossible for many military applicati...
Solid State Synthesis and Characterization of Some Novel Sodium Rare Earth Phosphates
Seyyidoglu, Semih; Özenbaş, Ahmet Macit; Kizilyalli, Meral; Yılmaz, Ayşen (2005-01-01)
Recently, much attention has been paid to the rare earth phosphates because of their potential applications for optical materials, including laser, phosphors, and more recently, anti-UV materials [1]. MOPO4 type materials possess properties that make them potentially useful for catalytic, electronic and ion exchange applications[2]. In this work, Ln2O3 (where Ln= La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Yb) were used as a rare earth source, NH4H2PO4 was used as a phosphate source and Na2CO3 was used as a sodium sour...
Time resolved Fabry-Perot measurements of cavity temperature in pulsed QCLs
Gundogdu, S.; Pisheh, H. S.; Demir, A.; Gunoven, M.; Aydinli, A.; Sirtori, C. (The Optical Society, 2018-3-5)
Temperature rise during operation is a central concern of semiconductor lasers and especially difficult to measure during a pulsed operation. We present a technique for in situ time-resolved temperature measurement of quantum cascade lasers operating in a pulsed mode at similar to 9.25 mu m emission wavelength. Using a step-scan approach with 5 ns resolution, we measure the temporal evolution of the spectral density, observing longitudinal Fabry-Perot modes that correspond to different transverse modes. Con...
Citation Formats
K. Zengin, “Pumping chamber design in diode pumped solid-state lasers for maximum system efficiency and minimum optical distortion,” M.S. - Master of Science, Middle East Technical University, 2013.