Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Effects of oxidative functionalized and aminosilanized carbon nanotubes on the behaviours of polyamide-6 nanocomposites
Download
index.pdf
Date
2013
Author
Şankal, Seçil
Metadata
Show full item record
Item Usage Stats
138
views
74
downloads
Cite This
The first aim of this dissertation was to modify carbon nanotubes to be used as nano-reinforcements in the polyamide-6 matrix. Surfaces were first oxidative functionalized by sulphuric acid/nitric acid mixture, then aminosilanized by γ-aminopropyltriethoxysilane. Chemical groups formed on carbon nanotubes due to these surface treatments were characterized by X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy and also energy dispersive spectroscopy. Morphological changes and crystal structure of surface-treated carbon nanotubes were analyzed by scanning electron microscopy and X-ray diffraction, respectively. Thermogravimetric analysis was also used to observe thermal degradation of the chemical groups formed on the nanotube surfaces. Then, unmodified, oxidative functionalized and aminosilanized carbon nanotubes with three different loading levels (0.1, 0.5 and 1.0 wt%) were melt mixed with polyamide-6 matrix via laboratory size twin-screw extruder, followed by specimen shaping via injection molding. As the second aim of this dissertation, morphology and dispersion states of carbon nanotubes in polyamide-6 matrix was investigated by scanning and transmission electron microscopy; which revealed more homogeneous dispersion of functionalized and aminosilanized carbon nanotubes due to their increased chemical interactions with the matrix. The third aim of this dissertation was to investigate effects of oxidative functionalized and aminosilanized carbon nanotubes on the (i) isothermal and (ii) non-isothermal crystallization kinetics of polyamide-6 by DSC analyses, and (iii) crystal structure of injection molded specimens by XRD analyses. Due to basically very effective heterogeneous nucleation effect, both increasing amount and surface functionalization of carbon nanotubes by oxidation and aminosilanization resulted in higher relative crystallinity for all three cases. The increases were as much as 40% for the isothermal and non-isothermal crystallization, and it was up to more than two times in the injection molding. Crystallization parameters and Avrami constants indicated that crystallization rate increases in isothermal crystallization while it decreases in non-isothermal crystallization due to the delayed conformational mobility of polymer chains via physical hinderance of carbon nanotubes. Parameters also revealed that growth mechanism of crystallites might change during isothermal crystallization while there was no significant change during non-isothermal crystallization. XRD deconvolution analyses indicated that during injection molding, due to the constraints of carbon nanotubes only α-crystal structure was formed. Finally, as the fourth aim of this dissertation, effects of oxidative functionalized and aminosilanized carbon nanotubes on the mechanical and thermal properties of polyamide-6 nanocomposites were investigated. Flexural and tensile tests indicated that, increases in the flexural strength and tensile yield strength were 30% and 20%, while in the flexural modulus and Young’s modulus were 40% and 23%, respectively, with only 1 wt% aminosilanized carbon nanotubes; due to very efficient load transfer from the matrix to covalently bonded carbon nanotubes. Both dynamic mechanical analysis and thermogravimetric analysis showed that surface modified carbon nanotubes improve all thermal properties due to decreased matrix mobility and physical barrier formation. For example, increases in the storage modulus values were as much as 25%, while the increase in the thermal degradation temperatures were as much as by 5°C in the specimens with only 1wt% aminosilanized carbon nanotubes. Increases in the mechanical and thermal properties should be also due to the increased crystallinity of polyamide-6 matrix via carbon nanotubes acting as heterogeneous nucleation sites.
Subject Keywords
Polyamides.
,
Nanotubes.
,
Crystallization.
,
Oxidation.
URI
http://etd.lib.metu.edu.tr/upload/12615895/index.pdf
https://hdl.handle.net/11511/22541
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Effects of halloysite nanotubes on the mechanical, crystallization, and weathering behaviour of polylactide
Kaygusuz, İlker; Kaynak, Cevdet; Özkan, Necati; Department of Micro and Nanotechnology (2014)
The purpose of the first part of this thesis was to investigate the usability of industrially friendly twin screw extruder melt compounding method and injection molding melt shaping method to produce polylactide (PLA) / halloysite nanotube (HNT) composites for engineering applications. One of the main problems of PLA to be used in engineering applications is its inherent brittleness. Therefore, another goal was to reveal the effects of HNTs on the significant thermal and mechanical engineering properties of...
Effects of nanoparticles on thermal degradation of polylactide/aluminium diethylphosphinate composites
Kaya, Hatice; Özdemir, Esra; Kaynak, Cevdet; Hacaloğlu, Jale (2016-03-01)
We investigated the thermal degradation characteristics of polylactide (PLA) aluminium diethylphosphinate (AlPi) composites involving SiO2, halloysite (HNT) and organically modified montmorillonite (OMMT) via direct pyrolysis mass spectrometry. Presence of nanoparticles, SiO2, HNT and OMMT affected both thermal stability and relative yields of thermal degradation products of PLA/AlPi. The transesterification reactions and interactions between PLA and AlPi were depressed in the presence of SiO2 and HNT. The ...
Effect of boron containing materials on flammability and thermal degradation of polyamide-6 composites containing melamine cyanurate
Yılmaz, Ayşen; Bayramli, Erdal (2011-05-01)
Three different boron containing materials, zinc borate (ZnB), borophosphate (BPO(4)), and boron and silicon containing oligomer (BSi), were used to improve the flame retardancy of melamine cyanurate (MC) in a polyamide-6 (PA-6) matrix. The combustion and thermal degradation characteristics were investigated using limiting oxygen index (LOI), UL-94 standard, thermogravimetric analysis-Fourier transform infrared spectroscopy (TGA-FTIR), differential scanning calorimeter (DSC), and scanning electron microscop...
Effects of oxidative functionalization and aminosilanization of carbon nanotubes on the mechanical and thermal properties of polyamide 6 nanocomposites
Kaynak, Cevdet (SAGE Publications, 2013-11-13)
The focus of this study is to investigate the effects of oxidative functionalized carbon nanotubes (f-CNTs) and aminosilanized carbon nanotubes (s-CNTs) on the mechanical and thermal properties of polyamide 6 nanocomposites. Oxidation of nanotube surfaces was conducted with sulfuric acid/nitric acid mixture and then aminosilanization was carried out with -aminopropyltriethoxysilane. Nanocomposites were compounded by melt mixing technique and shaped by injection molding. Scanning electron microscopy images r...
Effect of Microstructure on the Mechanical Behavior of Reactive Magnetron Sputtered Al2O3/TiO2 Multilayer Ceramics
Dericioğlu, Arcan Fehmi (Japan Institute of Metals, 2008-11-01)
Mechanical characteristics of reactive magnetron sputtered Al2O3-TiO2 multilayer ceramics were studied. Tailored mechanical properties such as moderately high hardness and reasonable toughness were achieved through varying sputtering process parameters resulting in microstructural control at nano-scale. Interchanging Al2O3 and TiO2 layers with a single layer thickness of similar to 65-70 nm were deposited on single crystal alumina (sapphire) substrates to form the multilayer structure composed of 10 layers....
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Şankal, “Effects of oxidative functionalized and aminosilanized carbon nanotubes on the behaviours of polyamide-6 nanocomposites,” M.S. - Master of Science, Middle East Technical University, 2013.