Interactions of water and sediment phosphorus in Lake Eymir

Download
2013
Plevneli, Tolga
A detailed study is held in Lake Eymir, a shallow eutrophic lake, investigating the phosphorus concentrations in water and the bottom sediment. Water depth, secchi depth, TSS, sediment soluble total phosphorus, sediment soluble PO4-P, Chl-a , TKN, NH4-N, NO2-N, NO3-N, alkalinity, temperature, pH, conductivity, dissolved oxygen, turbidity and PAR parameters are monitored for 21 months and Principal Component Analysis (PCA) is applied to identify trend of phosphorus concentration in water column. Results indicated that total phosphorus concentrations in water column and sediment at lake bottom are susceptible to changes caused by the variations in other water quality parameters compared to average, surface and mid-depth values. Correlations observed between P and other parameters were the highest in Bottom – 3 data set. In order to model sediment soluble total phosphorus in Lake Eymir, chlorophyll-a, NH3, total phosphorus, PO4-P, temperature, conductivity, pH, turbidity, ΔT and dissolved oxygen are defined as effective parameters. Linear regression models were more successful in predicting sediment soluble phosphorus concentrations compared to non-linear ones. Turbidity is a good tracer for total phosphorus concentrations in Lake Eymir. Temperature is seasonally effective on phosphorus concentrations, and may create stratified water in summer. Stratification causes phosphorus to build up in bottom water layer. Particle size distribution results show that area of sampling point 1 has different characteristics compared to other sampling locations since it is located at the inlet. The exchange of phosphorus from water to sediment is mostly completed within the first 7-8 hours. On average, 30% of the exchange is completed in an hour. It is clearly seen that although sediment layer in the lake is a phosphorus source, it has not reached its phosphorus binding capacity yet. Adsorption isotherm is found to be pseudo-second-order with a coefficient of determination greater than 0.9909 at all sampling points. Sediment phosphorus content has been fractioned into NH4Cl-P, BD-P, NaOH-P and HCl-P in order to identify permanent and bioavailable parts. Fractionation results show that even if the soluble concentrations are low, they are high enough to cause eutrophication problems.

Suggestions

Comparison of phosphorus reduction alternatives in control of nutrient concentrations in Lake Uluabat (Bursa, Turkey): Partial versus full sediment dredging
YENİLMEZ, Firdes; Aksoy, Ayşegül (2013-01-01)
In this study, Water Quality Analysis Simulation Program (WASP) was used to simulate the impacts of various phosphorus (P) load reduction scenarios on nutrient concentrations in Lake Uluabat, a Ramsar site (a wetland of international importance designated under the Ramsar Convention), including sediment dredging options and source reduction. The model was calibrated for various water constituents including ortho-phosphate (PO43-) and nitrate (NO3-). The calibrated model was used as a management tool to pred...
Effects of river inputs on particulate organic matter composition and distributions in surface waters and sediments of the Mersin Bay, Northeastern Mediterranean Sea
Akçay, İsmail; Tuğrul, Süleyman; Özhan, Koray (2022-05-01)
Terrestrial inputs-induced eutrophication in the P-depleted Northeastern (NE) Mediterranean shelf waters has led to changes in particulate organic matter (POM) composition and distributions in the water column and surface sediments. The present study aimed to understand the impacts of terrestrial nutrient and POM inputs on coastal eutrophication, bulk POM composition and concentrations in surface waters and sediments of the Mersin Bay, located at the Cilician Basin of NE Mediterranean Sea. The present resul...
Impact of alternating wet and dry periods on long-term seasonal phosphorus and nitrogen budgets of two shallow Mediterranean lakes
Coppens, Jan; ÖZEN, ARDA; Tavsanoglu, U. Nihan; Erdogan, Seyda; Levi, Eti E.; Yozgatlıgil, Ceylan; Jeppesen, Erik; Beklioğlu, Meryem (2016-09-01)
The water balance, with large seasonal and annual water level fluctuations, has a critical influence on the nitrogen and phosphorus dynamics of shallow lakes in the semi-arid climate zone. We constructed seasonal water and nutrient budgets for two connected shallow lakes, Lakes Mogan and Eymir, located in Central Anatolia, Turkey. The study period covered 20 years with alternations between dry and wet years as well as restoration efforts including sewage effluent diversion and biomanipulations in Lake Eymir...
Seismic evidence of shallow gas in the sediment on the shelf off Trabzon, southeastern Black Sea
Okyar, M; Ediger, V (1999-04-01)
High-resolution seismic surveys carried out on the shelf off Trabzon (southeastern Black Sea) show that the sub-bottom stratigraphy consists of two main depositional sequences (A and B) one of which contains zones of acoustic turbidity. Of these, the upper depositional sequence (A) is thought to comprise Holocene sediments, while the lower depositional sequence (B) is interpreted as approximating to the Pleistocene. The boundary between these sequences is defined by a reflector (R), which is interpreted as ...
Impacts of climatic variables on water-level variations in two shallow Eastern Mediterranean lakes
Yagbasan, Ozlem; Yazıcıgil, Hasan; Demir, Vahdettin (2017-08-01)
Variations in temperature and precipitation have direct impacts on the physical, chemical and biological characteristics of the shallow lakes. This paper examines the possible linkages between climate variables and the water levels of shallow interconnected Lakes Mogan and Eymir, located 20 km south of Ankara in Central Anatolia. The variations in the lakes' water levels during 1996-2015 are studied and the impacts of climate variables on the lake levels are assessed to address the long-term consequences. T...
Citation Formats
T. Plevneli, “Interactions of water and sediment phosphorus in Lake Eymir,” M.S. - Master of Science, Middle East Technical University, 2013.