Modelling effects of insufficient lap splices on a deficient reinforced concrete frame

Lin, Wesley Wei -Chih
In order to reduce seismic risk in vulnerable buildings, buildings identified to be at risk should be assessed and strengthened. Performance evaluation of deficient buildings has become a major concern due to devastating earthquakes in the past. In order to justify new provisions in design and assessment codes, experiments and analyses are inherently necessary. In this thesis study, investigations into the behaviour of two deficient reinforced concrete frames built at Middle East Technical University’s Structural and Earthquake Laboratory and tested via pseudo-dynamic tests were made. These frames were modelled on the OpenSees platform by following methods of analyses outlined in the Turkish Earthquake Code of 2007 (TEC 2007) and ASCE/SEI-41-06. Both deficient frames were essentially the same, with the only difference being the presence of insufficient lap splices, which was the focus of the study. Time history performance assessments were conducted in accordance to TEC 2007’s damage state limits and ASCE/SEI 41-06’s performance limits. The damages observed matched the performance levels estimated through the procedure outlined in TEC 2007 rather well. Specific to the specimen with lap splice deficiencies, ASCE/SEI 41-06 was overly conservative in its assessments. TEC 2007’s requirements for lap splice lengths were found to be conservative in the laboratory and are able to tolerate deficiencies up to 25% of the required length. With respect to mathematical models, accounting for materials in deficient systems by using nominal but reduced strength properties is not very efficient and unless joint deformations are explicitly accounted for, local deformations cannot be captured.


Numerical simulations of reinforced concrete frames tested using pseudo-dynamic method
Mutlu, Mehmet Başar; Binici, Barış; Department of Civil Engineering (2012)
Considering the deficiencies frequently observed in the existing reinforced concrete buildings, detailed assessment and rehabilitation must be conducted to avoid significant life and value loss in seismic zones. In this sense, performance based evaluation methods suggested in the regulations and codes must be examined and revised through experimental and analytical research to provide safe and economical rehabilitation solutions. In this study, seismic behavior of three reinforced concrete frames built and ...
Seismic performance evaluation of reinforced concrete frames infilled with autoclave aerated concrete masonry
Siddiqui, Umair Ahmed; Sucuoğlu, Haluk; Yakut, Ahmet; Department of Earthquake Engineering and Engineering Seismology (2013)
Seismic risk reduction requires detailed assessment and rehabilitation of vulnerable buildings to avoid significant property and life losses. Several reinforced concrete buildings are deficiently designed and constructed and also contain non-engineered unreinforced masonry infill panels which dominate the seismic response and impart excessive lateral forces for which they are not designed for. Therefore, seismic performance assessment procedures recommended in guidelines and codes needs detailed examination...
Influence of the shear wall area to floor area ratio on the seismic performance of existing reinforced concrete buildings
Günel, Ahmet Orhun; Burak Bakır, Burcu; Department of Civil Engineering (2013)
An analytical study is performed to evaluate the influence of shear wall area to floor area ratio on the behavior of existing mid-rise reinforced concrete buildings under earthquake loading. The seismic performance of five existing school buildings with shear wall ratios between 0.00% and 2.50% in both longitudinal and transverse directions and their strengthened counterparts are evaluated. Based on the structural properties of the existing buildings, additional buildings with varying shear wall ratios are ...
A comparative structural and architectural analysis of earthquake resistant design principles applied in reinforced concrete residential buildings in Turkey
Özmen, Cengiz; Ünay, Ali İhsan; Department of Building Science in Architecture (2008)
The aim of this thesis is to demonstrate that it is possible to design earthquake resistant residential structures without significant compromises in the spatial quality and economic viability of the building. The specific type of structural system that this thesis focuses on is the reinforced concrete skeleton system. The parametric examples and key studies that are used in this research are chosen among applied projects in the city of Bolu. This city is chosen due to its location on the North Anatolian Fa...
Characterization of laser scanners for detecting cracks for post-earthquake damage inspection
Anil, Engin Burak; Akinci, Burcu; Garrett, James H.; Kurç, Özgür (2013-01-01)
Objective, accurate, and fast assessment of damage to buildings after an earthquake is crucial for timely remediation of material losses and safety of occupants of buildings. Laser scanners are promising sensors for collecting geometrical data regarding the damaged states of buildings, as they are able to provide high coverage and accuracy at long ranges. Yet, we have limited knowledge on the performance of laser scanners for detecting earthquake damage, and requirements of such data collection. This paper ...
Citation Formats
W. W.-C. Lin, “Modelling effects of insufficient lap splices on a deficient reinforced concrete frame,” M.S. - Master of Science, Middle East Technical University, 2013.