Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Modelling effects of insufficient lap splices on a deficient reinforced concrete frame
Download
index.pdf
Date
2013
Author
Lin, Wesley Wei -Chih
Metadata
Show full item record
Item Usage Stats
230
views
132
downloads
Cite This
In order to reduce seismic risk in vulnerable buildings, buildings identified to be at risk should be assessed and strengthened. Performance evaluation of deficient buildings has become a major concern due to devastating earthquakes in the past. In order to justify new provisions in design and assessment codes, experiments and analyses are inherently necessary. In this thesis study, investigations into the behaviour of two deficient reinforced concrete frames built at Middle East Technical University’s Structural and Earthquake Laboratory and tested via pseudo-dynamic tests were made. These frames were modelled on the OpenSees platform by following methods of analyses outlined in the Turkish Earthquake Code of 2007 (TEC 2007) and ASCE/SEI-41-06. Both deficient frames were essentially the same, with the only difference being the presence of insufficient lap splices, which was the focus of the study. Time history performance assessments were conducted in accordance to TEC 2007’s damage state limits and ASCE/SEI 41-06’s performance limits. The damages observed matched the performance levels estimated through the procedure outlined in TEC 2007 rather well. Specific to the specimen with lap splice deficiencies, ASCE/SEI 41-06 was overly conservative in its assessments. TEC 2007’s requirements for lap splice lengths were found to be conservative in the laboratory and are able to tolerate deficiencies up to 25% of the required length. With respect to mathematical models, accounting for materials in deficient systems by using nominal but reduced strength properties is not very efficient and unless joint deformations are explicitly accounted for, local deformations cannot be captured.
Subject Keywords
Reinforced concrete construction.
,
Structural frames.
,
Buildings
URI
http://etd.lib.metu.edu.tr/upload/12615584/index.pdf
https://hdl.handle.net/11511/22612
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Numerical simulations of reinforced concrete frames tested using pseudo-dynamic method
Mutlu, Mehmet Başar; Binici, Barış; Department of Civil Engineering (2012)
Considering the deficiencies frequently observed in the existing reinforced concrete buildings, detailed assessment and rehabilitation must be conducted to avoid significant life and value loss in seismic zones. In this sense, performance based evaluation methods suggested in the regulations and codes must be examined and revised through experimental and analytical research to provide safe and economical rehabilitation solutions. In this study, seismic behavior of three reinforced concrete frames built and ...
Seismic performance evaluation of reinforced concrete frames infilled with autoclave aerated concrete masonry
Siddiqui, Umair Ahmed; Sucuoğlu, Haluk; Yakut, Ahmet; Department of Earthquake Engineering and Engineering Seismology (2013)
Seismic risk reduction requires detailed assessment and rehabilitation of vulnerable buildings to avoid significant property and life losses. Several reinforced concrete buildings are deficiently designed and constructed and also contain non-engineered unreinforced masonry infill panels which dominate the seismic response and impart excessive lateral forces for which they are not designed for. Therefore, seismic performance assessment procedures recommended in guidelines and codes needs detailed examination...
Strengthening of brick infilled rc frames with cfrp reinforcement-general principles
Akın, Emre; Özcebe, Güney; Department of Civil Engineering (2011)
There is an excessive demand for the rehabilitation of frame type reinforced concrete (RC) buildings which do not satisfy current earthquake code provisions. Therefore, it is imperative to develop user-friendly seismic strengthening methodologies which do not necessitate the evacuation of building during rehabilitation period. In this study, it was aimed to strengthen the brick infill walls by means of diagonal Carbon Fiber-Reinforced Polymer (CFRP) fabrics and to integrate them with the existing structural...
A comparative structural and architectural analysis of earthquake resistant design principles applied in reinforced concrete residential buildings in Turkey
Özmen, Cengiz; Ünay, Ali İhsan; Department of Building Science in Architecture (2008)
The aim of this thesis is to demonstrate that it is possible to design earthquake resistant residential structures without significant compromises in the spatial quality and economic viability of the building. The specific type of structural system that this thesis focuses on is the reinforced concrete skeleton system. The parametric examples and key studies that are used in this research are chosen among applied projects in the city of Bolu. This city is chosen due to its location on the North Anatolian Fa...
Characterization of laser scanners for detecting cracks for post-earthquake damage inspection
Anil, Engin Burak; Akinci, Burcu; Garrett, James H.; Kurç, Özgür (2013-01-01)
Objective, accurate, and fast assessment of damage to buildings after an earthquake is crucial for timely remediation of material losses and safety of occupants of buildings. Laser scanners are promising sensors for collecting geometrical data regarding the damaged states of buildings, as they are able to provide high coverage and accuracy at long ranges. Yet, we have limited knowledge on the performance of laser scanners for detecting earthquake damage, and requirements of such data collection. This paper ...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
W. W.-C. Lin, “Modelling effects of insufficient lap splices on a deficient reinforced concrete frame,” M.S. - Master of Science, Middle East Technical University, 2013.