Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
The Effect of infill walls on the seismic performance of boundary columns in reinforced concrete frames
Download
index.pdf
Date
2013
Author
Fenerci, Aksel
Metadata
Show full item record
Item Usage Stats
6
views
2
downloads
Reinforced concrete frames with unreinforced masonry infill walls constitute a significant portion of the building stock throughout the world. Infill walls in these buildings are generally considered as non-structural elements and neglected during design and assessment. On the other hand, observations after several earthquakes revealed that infill walls may have detrimental effects on the adjacent frame members. This observation brings out the requirement for further research on the effects of infill walls on the seismic performance of boundary columns. Additionally, current procedures for the design and assessment of such structures should be experimentally tested and validated along with the development of accurate numerical simulation tools is still in need for these purposes. In this study, seismic behavior of two test specimens which were designed, constructed and tested using the pseudo dynamic testing method in the Structural Mechanics Laboratory of Middle East Technical University are investigated. The two test frames were code conforming and seismically deficient frames. Numerical modeling of the test frames was conducted using DIANA (2008) finite element platform with the available constitutive models. The modeling approach was validated with the experimental results through comparisons. The analysis results are presented for a better understanding of the shear forces transferred from infill walls to the boundary columns. Seismic assessment of the two frames was conducted using ASCE/SEI 41-06 guidelines and the obtained results were compared to the damage observed during experiments. It was found that the presence of infill walls greatly altered the strength, stiffness, deformation capacity, ductility and failure mode of the reinforced concrete test frames. Significant amount of shear force transfer caused shear damage on boundary columns and decreased the ductility. ASCE/SEI 41-06 procedures for seismic assessment of reinforced concrete frames with infill walls are found as unsatisfactory in estimating the observed damage. Use of plastic hinge strains instead of average strain along the member length provided better estimations for boundary column damage levels.
Subject Keywords
Reinforced concrete construction.
,
Structural frames.
,
Earthquake resistant design.
,
Finite element method.
URI
http://etd.lib.metu.edu.tr/upload/12616436/index.pdf
https://hdl.handle.net/11511/23076
Collections
Graduate School of Natural and Applied Sciences, Thesis