Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Açık Bilim Politikası
Açık Bilim Politikası
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Numerical simulations on stimulated raman scattering for fiber raman amplifiers and lasers using spectral methods
Download
index.pdf
Date
2007
Author
Berberoğlu, Halil
Metadata
Show full item record
Item Usage Stats
2
views
0
downloads
Optical amplifiers and lasers continue to play its crucial role and they have become an indispensable part of the every fiber optic communication systems being installed from optical network to ultra-long haul systems. It seems that they will keep on to be a promising future technology for high speed, long-distance fiber optic transmission systems. The numerical simulations of the model equations have been already commercialized by the photonic system designers to meet the future challenges. One of the challenging problems for designing Raman amplifiers or lasers is to develop a numerical method that meets all the requirements such as accuracy, robustness and speed. In the last few years, there have been much effort towards solving the coupled differential equations of Raman model with high accuracy and stability. The techniques applied in literature for solving propagation equations are mainly based on the finite differences, shooting or in some cases relaxation methods. We have described a new method to solve the nonlinear equations such as Newton-Krylov iteration and performed numerical simulations using spectral methods. A novel algorithm implementing spectral method (pseuodspectral) for solving the two-point boundary value problem of propagation equations is proposed, for the first time to the authors' knowledge in this thesis. Numerical results demonstrate that in a few iterations great accuracy is obtained using fewer grid points.
Subject Keywords
Optical fibers.
URI
http://etd.lib.metu.edu.tr/upload/3/12608986/index.pdf
https://hdl.handle.net/11511/17189
Collections
Graduate School of Natural and Applied Sciences, Thesis