Analysis and optimization of cylindrical structures manufactured by automated fiber placement technique

Download
2014
Güldü, Sedat
Automated Fiber Placement (AFP) is a highly automated manufacturing process which has made it possible to manufacture composite parts utilizing curved tow paths resulting in variable stiffness composite structures. During the manufacturing of the composite structures with the automated fiber placement machines, fiber orientation angle can be changed according to the specific design needs. Therefore, variable fiber orientation can be sought in an optimization framework for favorable structural response. The purpose of this thesis is to show how the structural behavior of the cylindrical shell can be improved through the use of fiber placement technology in the manufacturing of the layers of the cylindrical shell of revolution. For this purpose, a methodology is developed for generating the finite element model of tow-placed variable-stiffness laminated composite cylindrical shells. The developed method allows the calculation of the ply thicknesses including the gaps and overlaps which occur as a result of the manufacturing of the plies of the cylindrical shell using curvilinear fiber paths. Fiber orientation angle of each element is determined by making use of the reference fiber path which is defined by two parameters. Along the reference fiber path, fiber orientation angle changes linearly in a specified direction. Finite element model creation and analyses are carried out using the finite element program MSC.NASTRAN®. For the optimization of the reference fiber path, Particle Swarm Optimization (PSO) code is developed in Matlab environment. PSO is a robust optimization technique based on the movement and intelligence of swarms. Optimization of the parameters of the reference fiber path is performed for axially and circumferentially variable stiffness cylinders including the strength and manufacturing constraints. Optimization results are also compared with results of the baseline constant stiffness cylinders. The objective of the optimization is taken as the maximization of the buckling factor of the cylindrical shell subjected to different load cases. Results show that higher buckling load factors can be obtained for variable stiffness cylinders compared to the constant stiffness laminated cylinders.

Suggestions

INVESTIGATION OF INTERSONIC FRACTURE IN HIGLY CURVED COMPOSITE LAMINATES UNDER QUASI-STATIC LOADING
Gozluklu, B.; Uyar, I; Çöker, Demirkan (2014-07-25)
In wind energy and aerospace industries, new advances in composite manufacturing technology enable to produce primary load carrying elements as composite materials in wide variety of shapes large such as an L-shape. However, due to the geometry, Interlaminar Normal Stresses (ILNS) are induced once a moderately thick laminate takes highly curved shape. In the curved part of the L-shaped structure, the development of ILNS promotes mode-I type of delamination propagation which is the weakest fracture mode. Thi...
Design of Retaining Walls Using Big Bang-Big Crunch Optimization
Camp, Charles V.; Akin, Alper (American Society of Civil Engineers (ASCE), 2012-03-01)
A procedure is developed for designing low-cost or low-weight cantilever reinforced concrete retaining walls, with base shear keys, using big bang-big crunch (BB-BC) optimization. The objective of the optimization is to minimize the total cost or total weight per unit length of the retaining structure subjected to constraints on the basis of stability, bending moment, and shear force capacities and the requirements of the American Concrete Institute (ACI 318-05). An iterative population-based heuristic sear...
Failure analysis of tapered composite structures under tensile loading
Çelik, Ozan; Parnas, Kemal Levend; Department of Mechanical Engineering (2016)
A three dimensional finite element modeling approach is used to evaluate the effects of preliminary design variables on the performance of tapered composite laminates under tensile loading. Hashin failure criteria combined with a progressive failure algorithm is used for in-plane failure mechanisms and cohesive zone method is used for out-of-plane failures. The modeling approach is validated by a comparison with experimental results from literature. The validated model is used to examine various design vari...
Effect of resin and fiber on the abrasion, impact and pressure resistance of cylindrical composite structures
Kaya, Derya; Yılmazer, Ülkü; Department of Chemical Engineering (2011)
The aim of this study was to investigate the effects of resin and fiber on the abrasion, impact and internal pressure resistances of fiber reinforced plastic composite pipes produced by continuous filament winding method. For this study, pipe samples were produced with different combinations of resin type, fiber type, fiber amount and fiber length. All the samples were tested in accordance with the related ISO (International Organization for Standardization), DIN (German Standardization Institution) and BSI...
Strengthening of L-shaped composite laminates using carbon nanotube reinforcement and thin ply non-crimp fabrics
Arca, Miray Aydan; Çöker, Demirkan; Papila, Melih; Department of Aerospace Engineering (2014)
The advances in manufacturing technologies have increased the use of composite materials in complex shapes such as curved beams. However, use of composites in complex geometries creates a weakness at the curvature and causes delamination failure. Major objective is to provide solution for this problem without degrading properties or increasing the weight of the structure. In this study, the effect of CNTs in the resin and the use of non-crimp fabric on the fracture toughness and curved beam strength of lami...
Citation Formats
S. Güldü, “Analysis and optimization of cylindrical structures manufactured by automated fiber placement technique,” M.S. - Master of Science, Middle East Technical University, 2014.