Investigation of the production of silicon nitride from Turkish rice husks

Download
2014
Alpay, Barış Yiğit
Production of silicon nitride by the carbothermal reduction and nitridation of silicon dioxide in rice husk was investigated. For this purpose, rice husks from the Black Sea region (Bafra) of Turkey was obtained. The husks were subjected to a pretreatment step involving water washing, acid leaching and pyrolysis at 600C. Pyrolyzed rice husks were found to have a Carbon:Silicon Dioxide molar ratio of about 5.2. Pyrolyzed rice husks were used as the starting material for the carbothermal reduction and nitridation experiments. Temperatures between 1300-1500C were studied for 1 h to determine the optimum temperature for the process. Then, the reaction duration, nitrogen flow rate and starting pyrolyzed rice husk amount was studied in order to examine their effect on the products of the process. Three different silicon nitride containing products were distinguished. Upon XRD analyses, it was seen that silicon carbide was formed along with silicon nitride in all conditions. Silicon nitride weight percentage was found to be increasing with the increasing reaction duration, increasing nitrogen flow rate and decreasing pyrolyzed rice husk amount. SEM analyses showed that silicon nitride was mainly formed as nano/micro-fibers.

Suggestions

Fabrication and doping of thin crystalline Si films prepared by e-beam evaporation on glass substrate
Sedani, Salar Habibpur; Turan, Raşit; Ünalan, Hüsnü Emrah; Department of Micro and Nanotechnology (2013)
In this thesis study, fabrication and doping of silicon thin films prepared by electron beam evaporation equipped with effusion cells for solar cell applications have been investigated. Thin film amorphous Si (a-Si) layers have been fabricated by the electron beam evaporator and simultaneously doped with boron (B) and phosphorous (P) using effusion cells. Samples were prepared on glass substrates for the future solar cell operations. Following the deposition of a-Si thin film, crystallization of the films h...
Development of Inorganic Silicone Polymers from Silica Fume
Erdoğan, Sinan Turhan; Tokyay, Mustafa (2012-10-05)
Geopolymers, inorganic materials with polymer-like repeating units containing silicon, aluminum, and oxygen, in 1-, 2-, or 3-dimensions, have been gaining popularity. While most research has focused on rigid, higher- strength geopolymers with mechanical properties similar to those of Portland cement concrete, there also exists a silicon-rich class of geopolymers which is more polymer-like, with lower strength and stiffness, and greater strain capacity but still having thermal resistance much superior to tra...
INVESTIGATION OF SCREEN-PRINTED AND EVAPORATED METAL CONTACTS ON BORON IMPLANTED EMITTER
Özmen, Ege; Turan, Raşit; Kocaman, Serdar; Department of Micro and Nanotechnology (2021-8-27)
Due to advantages in device manufacturing and the low cost of ownership, crystalline silicon (c-Si) solar cells fabricated on p-type wafers continue to dominate the photovoltaic (PV) market. Studies on n-type Czochralski (CZ) substrates have shown that they are more desirable for terrestrial applications than p-type substrates due to superior material and performance advantages such as higher minority carrier lifetime and easier surface passivation, absence of light-induced degradation (LID), and low sensit...
Simulation of an efficient silicon heterostructure solar cell concept featuring molybdenum oxide carrier-selective contact
MEHMOOD, Haris; NASSER, Hisham; Tauqeer, Tauseef; HUSSAIN, Shahzad; Ozkol, Engin; Turan, Raşit (2018-03-25)
Transition metal oxides/silicon heterocontact solar cells are the subject of intense research efforts owing to their simpler processing steps and reduced parasitic absorption as compared with the traditional silicon heterostructure counterparts. Recently, molybdenum oxide (MoOx, x<3) has emerged as an integral transition metal oxide for crystalline silicon (cSi)-based solar cell based on carrier-selective contacts (CSCs). In this paper, we physically modelled the CSC-based cSi solar cell featuring MoOx/intr...
Processing and characterization of carbon fiber reinforced silicon carbide (c/c-sic) matrix composites
Tülbez, Simge; Dericioğlu, Arcan Fehmi; Esen, Ziya; Department of Metallurgical and Materials Engineering (2015)
The current study was undertaken to investigate the production and characterization of Carbon Fiber Reinforced Silicon Carbide (C/C-SiC) Matrix Composites. Liquid silicon infiltration (LSI) method was utilized to produce the C/C-SiC composites. Processing of these composites via LSI process composed of three main stages. CFRP production, pyrolysis and liquid silicon infiltration. Each production stage has an important effect on the efficiency of the LSI process, therefore present study investigates the effe...
Citation Formats
B. Y. Alpay, “Investigation of the production of silicon nitride from Turkish rice husks,” M.S. - Master of Science, Middle East Technical University, 2014.