Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Development of interior ballistic simulation software
Download
index.pdf
Date
2014
Author
Danış, Faik
Metadata
Show full item record
Item Usage Stats
205
views
1201
downloads
Cite This
In this study, an interior ballistic simulation program is constructed for solid propellant conventional guns. In accordance with this purpose, interior ballistic calculations are studied numerically and two numerical models are produced: zero dimensional model and one dimensional model. Zero dimensional model, which is based on lumped parameter approach, examines variation of ballistic parameters with ignition of propellant grains in order to find muzzle velocity. In one dimensional code, the problem is modeled as one dimensionally as inviscid flow and Roe approximate Riemann solver is used as solution technique. Both of the models can simulate real gas flow by introducing covolume based on Noble-Abel equation of state. The differences between numerical models are examined.
Subject Keywords
Ballistics, İnterior.
,
Solid propellants.
,
Inviscid flow.
,
One-dimensional flow.
,
Fluid dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12617031/index.pdf
https://hdl.handle.net/11511/23426
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Experimental analysis on the measurement of ballistic properties of solid propellants
Cuerdaneli, S.; Ak, M. A.; Ulaş, Abdullah (2007-06-16)
Ballistic properties of solid propellants play an important role in the performance of the solid propellant rocket motors. Therefore, ballistic properties of a likely propellant should be known and provided to the design engineers. In this study, a specific AP/HTPB composite solid propellant (SCP) was examined to obtain steady-state linear burning rates as a function of pressure and propellant initial temperature, temperature sensitivity, and pressure deflagration limit (PDL). In some tests micro-thermocoup...
Ballistic design optimization of three-dimensional grains using genetic algorithms
Yücel, Osman; Aksel, Mehmet Haluk; Department of Mechanical Engineering (2012)
Within the scope of this thesis study, an optimization tool for the ballistic design of three-dimensional grains in solid propellant rocket motors is developed. The modeling of grain geometry and burnback analysis is performed analytically by using basic geometries like cylinder, cone, sphere, ellipsoid, prism and torus. For the internal ballistic analysis, a quasi-steady zero-dimensional flow solver is used. Genetic algorithms have been studied and implemented to the design process as an optimization algor...
Development of a Material Response Solver for Charring Ablative Materials
Coşkun, Volkan; Sert, Cüneyt; Acar, Bülent (2019-06-14)
Development of a solver in order to estimate the material response of charring ablative materials which are utilized as thermal protection systems in space vehicles is presented. First, the governing equations for modeling transient thermal response of charring ablative materials and the adopted numerical solution schemes are reviewed. The governing equations include energy balance, pyrolysis kinetics and mass balance. Solution of the governing equations in conjunction with appropriate boundary condi...
Experimental Investigation of Aerodynamics of Flapping-Wing Micro-Air-Vehicle by Force and Flow-Field Measurements
Deng, Shuanghou; Perçin, Mustafa; van Oudheusden, Bas (2016-02-01)
This study explores the aerodynamic characteristics of a flapping-wing micro aerial vehicle (MAV) in hovering configuration by means of force and flowfield measurements. The effects of flapping frequency and wing geometry on force generation were examined using a miniature six-component force sensor. Additional high-speed imaging allowed identification of the notable different deformation characteristics of the flexible wings under vacuum condition in comparison to their behavior in air, illustrating the re...
Development of a design method for subsonic intakes with improved aerodynamic performance and reduced radar signature
Ünlü, Tezcan; Eyi, Sinan; Department of Aerospace Engineering (2021-9-2)
In this thesis, a design method for a subsonic intake with high aerodynamic performance and reduced radar signature is developed. Intakes are key components of aircrafts’ propulsion systems that create open ended cavities resulting in increased radar signature. To achieve reduced radar signature characteristics, a parameterized double curved intake is proposed. Due to the nature of this multi-objective and multi-disciplinary engineering problem, surrogate based analysis and optimization approach is taken to...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. Danış, “Development of interior ballistic simulation software,” M.S. - Master of Science, Middle East Technical University, 2014.