Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Multiscale tumor modeling
Download
index.pdf
Date
2014
Author
Ünsal, Serbülent
Metadata
Show full item record
Item Usage Stats
273
views
129
downloads
Cite This
Cancer’s complex behavior decreases success rates of the cancer therapies. The usual steps cancer therapy are, deciding phase of the cancer and planing the therapy according to medical guidelines and there is no room or chance for personalized medicine. Simulation systems that use patient specific data as input and up-to-date scientific evidence as business rules has chance to help clinicians for evidence based personalized medicine practice.In this study our aim is creating a basic model to guide researchers who are eager to start tumor modeling. Developed model tries to simulate adenocarcinoma which is a subtype of non-small cell lung carcinoma. Parameters of model gathered from literature is based on A549. In simulations effects of oxygen concentration and mutation rate are examined. Tumor cell number decreases and apoptosis frequency increases proportionally with oxygen concentration’s decrease. When mutation rate decreases tumors become more vulnerable and apoptosis rate increases. All these results proves that model is consistent with tumor biology rules.
Subject Keywords
Tumors
,
Cancer
,
Cancer
,
Cellular automata.
URI
http://etd.lib.metu.edu.tr/upload/12617036/index.pdf
https://hdl.handle.net/11511/23456
Collections
Graduate School of Informatics, Thesis
Suggestions
OpenMETU
Core
GST isoenzymes in matched normal and neoplastic breast tissue
OĞUZTÜZÜN, SERPİL; Abu-Hijleh, A.; ÇOBAN, TÜLAY; Bulbul, D.; KILIÇ, MURAT; İŞCAN, Mümtaz; İşcan, Mesude (AEPress, s.r.o., 2011-01-01)
The potential to metabolize endogenous and exogenous substances may influence breast cancer development and tumor growth. Therefore we investigated GST activity and the protein expression of glutathione S-transferases (GSTs) isoenzymes known to be involved in the metabolism of endogenous and exogenous carcinogens in breast cancer tissue to obtain new information on their possible role in tumor progression.
Modeling of Breast and Gynecological Cancers Data and Investigating New Biological Findings
Ağyüz, Umut; Purutçuoğlu Gazi, Vilda (null; 2018-06-27)
The breast and gynecological cancers are two most common fatal cancers’ types in women in the world [1]. In oncological literature, these two cancers types are typically worked together since they are the risk factors of each other if the patient has one of these diseases [2]. In general, the cancers, like the heart diseases, are the systems’ ilnesses in the sense that any malfunctions in the associated transaction pathways cause problems in the activation flow, resulting in tumors. Therefore, the mathemati...
Synthesis of poly (dl-lactic-co-glycolic acid) coated magnetic nanoparticles for anti-cancer drug delivery
Tansık, Gülistan; Gündüz, Ufuk; Department of Biology (2012)
One of the main problems of current cancer chemotherapy is the lack of selectivity of anti-cancer drugs to tumor cells which leads to systemic toxicity and adverse side effects. In order to overcome these limitations, researches on controlled drug delivery systems have gained much attention. Nanoscale based drug delivery systems provide tumor targeting. Among many types of nanocarriers, superparamagnetic nanoparticles with their biocompatible polymer coatings can be targeted to an intented site by an extern...
The Mechanism of anti tumorigenic effects of 15-lox-1 in colon cancer
Çimen, İsmail; Banerjee, Sreeparna; Department of Biology (2012)
Colorectal cancer is the 4th most widespread cause of cancer mortality. One of the pathways that are involved in the development of colorectal cancer is the arachidonic acid metabolizing lipoxygenase (LOX) pathway. Inflammatory molecules formed from this pathway exert profound effects that may exacerbate the development and progression of colon and other cancers. 15 lipoxygenase-1 (15-LOX-1) is a member of LOX protein family that metabolizes primarily linoleic acid to 13-(S)-HODE. Several lines of evidence ...
Folic acid-conjugated polyethylene glycol-coated magnetic nanoparticles for doxorubicin delivery in cancer chemotherapy: Preparation, characterization and cytotoxicity on HeLa cell line
Erdem, Murat; Gündüz, Ufuk (2017-08-01)
Conventional chemotherapy is the most valid method to cope with cancer; however, it has serious drawbacks such as decrease in production of blood cells or inflammation of the lining of the digestive tract. These side effects occur since generally the drugs used in chemotherapy are distributed evenly within the body of the patient and cannot distinguish the cancer cells from the healthy ones. In this study, folic acid (FA)-conjugated, polyethylene-coated magnetic nanoparticles (FA-MNPs), and doxorubicin (Dox...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
S. Ünsal, “Multiscale tumor modeling,” M.S. - Master of Science, Middle East Technical University, 2014.