Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of a test setup for the characterization of vibration isolators
Download
index.pdf
Date
2013
Author
Uz, Canan
Metadata
Show full item record
Item Usage Stats
225
views
98
downloads
Cite This
Design of a test setup to investigate dynamic characteristics of a vibration isolator has been extensively studied over the years and international standards are regulated to explain the basis of the measurements. In this thesis, design efforts to develop a custom test setup for measuring dynamic stiffness of vibration isolators are presented. The setup is designed to conduct dynamic stiffness measurements for various static preload values and over a certain (target) frequency range. Direct Method has been selected among the methods defined by standards found in the literature. In order to investigate the effect of basic design parameters of the test setup on its overall performance, an equivalent eight degree of freedom lumped parameter model of the test setup is used which takes into account the basic dimensions and materials used for main structural components of the proposed setup design as well as the inertial characteristics of the isolators. Using the equivalent model, virtual tests are performed and the accuracy of the test setup is studied for various testing scenarios. A major work that is conducted as part of this work is to come up with a procedure that will enable tuning of the setup parameters such that the percent error on measured dynamic stiffness of various types of isolators are minimized for the case when various levels of error are present in measured displacement and force amplitudes. Moreover, normal modes of the main structure of the setup are analyzed in Finite Element Analysis software for different configurations. Dimensions, equivalent stiffness and mass calculations of the components in the discrete model are updated according to the Finite Element Analysis results. At the end of this work, detail design and 3-D solid assembly of the setup is modeled. Sample experiments are performed to validate the test setup (virtual tests).
Subject Keywords
Vibration
,
Vibration
,
Error analysis (Mathematics).
,
Finite element method.
,
Dynamics.
URI
http://etd.lib.metu.edu.tr/upload/12616727/index.pdf
https://hdl.handle.net/11511/23523
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Design of a Test Setup for Measuring Dynamic Stiffness of Vibration Isolators
Uz, Canan; Özgen, Gökhan Osman; Ciğeroğlu, Ender (2014-01-01)
In this paper, design efforts to develop a custom test setup for measuring dynamic stiffness of vibration isolators are presented. The setup is designed to conduct dynamic stiffness measurements for various static preload values and over a certain (target) frequency range. Direct Method has been selected among the methods defined by standards found in the literature. In order to investigate the effect of basic design parameters of the test setup on its overall performance, an equivalent eight degree of free...
Improvement of finite element model by using sine vibration test results of acommunication satellite
Çekiç, Abdulkadir; Yaman, Yavuz; Department of Aerospace Engineering (2021-2-15)
In this thesis, the vibration analysis of a communication satellite is performed,and the improvementof the finite element model by using vibration test results is presented. First, the satellite finite element model isgenerated using MSC/PATRAN and MSC/NASTRAN commercial software. With the natural frequency and frequency response analysis, the expected frequency values and response amplitudes in accelerometers arecalculated in vibration tests. The results obtained in the vib...
Development of bolted flange design tool based on finite element analysis and artificial neural network
Yıldırım, Alper; Kayran, Altan; Department of Aerospace Engineering (2015)
In bolted flange connections, commonly utilized in aircraft engine designs, structural integrity and minimization of the weight are achieved by the optimum combination of the design parameters utilizing the outcome of many structural analyses. Bolt size, number of bolts, bolt locations, casing thickness, flange thickness, bolt preload, and axial external force are some of the critical design parameters in bolted flange connections. Theoretical analysis and finite element analysis (FEA) are two main approach...
VERIFICATION OF A FINITE ELEMENT MODEL OF AN UNMANNED AERIAL VEHICLE WING TORQUE BOX VIA EXPERIMENTAL MODAL TESTING
Unlusoy, Levent; Şahin, Melin; Yaman, Yavuz (2012-07-04)
In this study, the detailed finite element model (FEM) of an unmanned aerial vehicle wing torque box was verified by the experimental modal testing. During the computational studies the free-free boundary conditions were used and the natural frequencies and mode-shapes of the structure were obtained by using the MSC Software. The results were then compared with the experimentally obtained resonance frequencies and mode-shapes. It was observed that the frequencies were in close agreement having an error with...
Development of artificial neural network based design tool for aircraft engine bolted flange connection subject to combined axial and moment load
Sanlı, Tahir Volkan; Kayran, Altan; Department of Aerospace Engineering (2018)
In this thesis, a design tool using artificial neural network (ANN) is developed for the bolted flange connections, which enables the user to analyze typical aircraft engine connections subjected to combined axial and bending moment in a fast yet very accurate way. The neural network trained for the design tool uses the database generated by numerous finite element analyses for different combinations of parametric design variables of the bolted flange connection. The defined parameters are the number of bol...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
C. Uz, “Design of a test setup for the characterization of vibration isolators,” M.S. - Master of Science, Middle East Technical University, 2013.