Optimum design of multistep spur gearbox

Öztürk, Fatih Mehmet
Optimum design of multistep gearbox, since many high-performance power transmission applications (e.g., automotive, space industry) require compact volume, has become an important interest area. This design application includes more complicated problems that are not taken into account while designing single stage gear drives. Design applications are generally made by trial and error methods depending on the experience and the intuition of the designer. In this study, using Visual Basic 6.0, an interactive program is developed for designing multistep involute standard and nonstandard spur gearbox according to the American Gear Manufacturers Association (AGMA) Standards 218.01 and 2001- B88. All the equations for calculating the pitting resistance geometry factor I, and the bending strength geometry factor J, are valid for external spur gears that are generated by rack-type tools (rack cutters or hobs). The program is made for twostage to six-stage gear drives, which are commonly used in the industry. Compactness of gear pairs and gearbox, and equality of factor of safety against bending failure is taken as the design objective. By considering the total required gear ratio, the number of reduction stages is input by the user. Gear ratios of every stage is distributed to the stages according to the total gear ratio that satisfies the required precision (from ±0.1 to ±0.00001 on overall gear ratio) depending on the user selected constraints (unequal gear ratio for every stage, noninteger gear ratio e.g.). Dimensional design is determined by considering bending stress, pitting stress, and involute interference constraints. These steps are carried out iteratively until a desirable solution is acquired. The necessary parameters for configuration design such as number of teeth, module, addendum modification coefficient, are selected from previously determined gear pairs that


Design of a computer interface for automatic finite element analysis of an excavator boom
Yener, Mehmet; Söylemez, Eres; Department of Mechanical Engineering (2005)
The aim of this study is to design a computer interface, which links the user to commercial Finite Element Analysis (FEA) program, MSC.Marc-Mentat to make automatic FE analysis of an excavator boom by using DELPHI as platform. Parametrization of boom geometry is done to add some flexibility to interface called OPTIBOOM. Parametric FE analysis of a boom shortens the design stages and helps to find the optimum design in terms of stresses and mass.
Design optimization of variable frequency driven three-phase induction motors
Ertan, B; Leblebicioğlu, Mehmet Kemal; Simsir, B; Hamarat, S; Cekic, A; Pirgaip, M (1998-01-01)
An approach to optimize the design of three-phase induction motors for a wide speed range drive is considered. Two operating points in the speed range are taken into consideration. The problem is handled as a constrained optimization problem. An accurate model for the motor in terms of its dimensions has been developed which predicts the motor performance based on about 60 parameters of motor geometry.
Design of a high precision hybrid AM machine
Yılmaz, Yunus Emre; Dölen, Melik; Department of Mechanical Engineering (2019)
Precision requirements in fused deposition modelling (FDM) processes have been increasing in recent years, especially after recognizing the potential of FDM process to produce complex and functional components. In order to increase precision of FDM process, 6-axis hybrid manufacturing system, which can carry out additive- and subtractive manufacturing processes in one manufacturing system platform, is designed. During design, kinematic analysis of the machine is done, axial- and angular errors are estimated...
Modeling of Multi Open Phase Fault Condition of Multi-phase Permanent Magnet Synchronous Motors
Fei, Marco; Zanasi, Roberto (2011-09-10)
This paper deals with the modeling of multi-phase permanent magnet synchronous motors under multi open phase fault condition. The presented model is suitable for generic number of phases, generic shape of the rotor flux and generic number of open circuit faults. The motor model in fault condition can be used for faults occurring on both adjacent and not adjacent phases. The model can be very useful both for simulation and implementation of fault-tolerant control strategies.
Opportunities and Challenges of Switched Reluctance Motor Drives for Electric Propulsion: A Comparative Study
Bostancı, Emine; Parsapour, Amir; Fahimi, Babak (2017-03-01)
Selection of the proper electric traction drive is an important step in design and performance optimization of electrified powertrains. Due to the use of high energy magnets, permanent magnet synchronous machines (PMSM) have been the primary choice in the electric traction motor market. However, manufacturers are very interested to find a permanent magnet-free alternative as a fallback option due to unstable cost of rare-earth metals and fault tolerance issues related to the constant permanent magnet excita...
Citation Formats
F. M. Öztürk, “Optimum design of multistep spur gearbox,” M.S. - Master of Science, Middle East Technical University, 2005.