Effects of atmospheric correction on vehicle classification with single and dual band infrared images

Download
2014
Özsaraç, Seçkin
A vehicle classification system, which uses features based on radiometry, is developed for both single band and dual band infrared (IR) image sequences. For classification using dual band sequences, the process is divided into six components. These are registration, fusion, moving vehicle detection, geometry estimation, atmospheric effects removal, and classification. In the single band case, registration and fusion steps are not used. The first major novelty of the thesis is an atmospheric correction, i.e. atmospheric effects removal, system that considers the spectral characteristics of the detector, lens, and filter. In this system, an enhanced temperature calibration method is developed and it is shown that the temperature accuracy for the dynamic range of the IR camera is very close to the ultimate goal, i.e. Noise Equivalent Temperature Difference (NETD) value of the camera. Furthermore, as the atmospheric effects vary from pixel to pixel, a geometry estimation method is developed to estimate the Line Of Sight (LOS) geometry for each pixel using only the Global Positioning System (GPS) coordinates of the camera and a Point Of Interest (POI) in the scene. The second major novelty of the thesis lies in the usage of the atmospherically corrected radiance values as features to improve the classification performance of the detected objects. The motivation is, each vehicle class has a discriminating radiance value that originates from the source temperature of the object modified by the intrinsic characteristics of the radiating surface. As a consequence, significant performance gains are achieved due to the use of radiance values in classification both for a single band and a dual band measurement systems.

Suggestions

Radiometric Features for Vehicle Classification with Infrared Images
Ozsarac, Seckin; Akar, Gözde (2017-04-11)
A vehicle classification system, which uses features based on radiometry, is developed for single band infrared (IR) image sequences. In this context, the process is divided into three components. These are moving vehicle detection, radiance estimation, and classification. The major contribution of this paper lies in the usage of the radiance values as features, other than the raw output of IR camera output, to improve the classification performance of the detected objects. The motivation behind this is tha...
Low--‐cost uncooled infrared imaging sensor using mems and a modified standard cmos process
Gülden, Mehmet Ali; Akın, Tayfun; Eminoğlu, Selim; Department of Electrical and Electronics Engineering (2013)
The thesis presents a monolithically integrated low-­‐cost uncooled infrared imaging sensor using a MEMS process and a modified standard CMOS process. The designed sensor has an image format of 160×120 with a pixel pitch of 40 μm. The sensor is implemented with microbolometers that sense the infrared radiation in the 8-­‐12 μm spectral band, where the sensing elements in each pixel are formed with CMOS diodes to sense the temperature variation in the pixel by monitoring the change in the forward bias voltag...
OBJECT RECOGNITION AND LOCALIZATION WITH ULTRASONIC-SCANNING
KIRAGI, H; Ersak, Aydın (1994-04-14)
In this paper an object recognition and localization system based on ultrasonic range imaging to be used in optically opaque environments is introduced. The system is especially designed for robotics applications. The ultrasonic image is acquired by scanning ultrasonic transducers in two dimensions above the area where objects are located. The features that are used for recognition and localization processes are extracted from the outermost boundaries of the objects present in the input scene. Experimental ...
A Comparison of MWIR and LWIR Imaging Systems with regard to Range Performance
Turgut, Berk Berkan; Artan, Goktug Gencehan; Bek, Alpan (2018-04-18)
Range performance of an imaging system is a key factor for an infrared search and tracking system with a purpose of detection, recognition and identification. Therefore, the prediction of the expected range performance is of utmost importance. The range prediction includes many variables that affect the outcome. Wavelength is one of the most important parameters because it has an enormous effect on range, but detector technology directly related to range performance. In this study, MWIR and LWIR imaging sy...
Design and implementation of a single slope adc for digital output cooled infrared readout integrated circuits
Akyürek, Fatih; Bayram, Barış; Department of Electrical and Electronics Engineering (2016)
Readout Integrated Circuits (ROIC) have been commonly implemented with analog video output buffers throughout history. Image signals are converted into digital by an external ADC card, which is placed outside the Dewar. Although analog output method is easier to implement, it is susceptible to the environmental noise due to the non-differential output. Moreover, the ADC proximity card placed outside of the dewar contributes to the system complexity. This thesis presents the design of a single slope ADC dedi...
Citation Formats
S. Özsaraç, “Effects of atmospheric correction on vehicle classification with single and dual band infrared images,” Ph.D. - Doctoral Program, Middle East Technical University, 2014.