Show/Hide Menu
Hide/Show Apps
anonymousUser
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Frequently Asked Questions
Frequently Asked Questions
Browse
Browse
By Issue Date
By Issue Date
Authors
Authors
Titles
Titles
Subjects
Subjects
Communities & Collections
Communities & Collections
Effects of atmospheric correction on vehicle classification with single and dual band infrared images
Download
index.pdf
Date
2014
Author
Özsaraç, Seçkin
Metadata
Show full item record
Item Usage Stats
2
views
1
downloads
A vehicle classification system, which uses features based on radiometry, is developed for both single band and dual band infrared (IR) image sequences. For classification using dual band sequences, the process is divided into six components. These are registration, fusion, moving vehicle detection, geometry estimation, atmospheric effects removal, and classification. In the single band case, registration and fusion steps are not used. The first major novelty of the thesis is an atmospheric correction, i.e. atmospheric effects removal, system that considers the spectral characteristics of the detector, lens, and filter. In this system, an enhanced temperature calibration method is developed and it is shown that the temperature accuracy for the dynamic range of the IR camera is very close to the ultimate goal, i.e. Noise Equivalent Temperature Difference (NETD) value of the camera. Furthermore, as the atmospheric effects vary from pixel to pixel, a geometry estimation method is developed to estimate the Line Of Sight (LOS) geometry for each pixel using only the Global Positioning System (GPS) coordinates of the camera and a Point Of Interest (POI) in the scene. The second major novelty of the thesis lies in the usage of the atmospherically corrected radiance values as features to improve the classification performance of the detected objects. The motivation is, each vehicle class has a discriminating radiance value that originates from the source temperature of the object modified by the intrinsic characteristics of the radiating surface. As a consequence, significant performance gains are achieved due to the use of radiance values in classification both for a single band and a dual band measurement systems.
Subject Keywords
Imaging systems.
,
Infrared imaging.
,
Vehicle detectors.
,
Imaging systems
URI
http://etd.lib.metu.edu.tr/upload/12617656/index.pdf
https://hdl.handle.net/11511/23803
Collections
Graduate School of Natural and Applied Sciences, Thesis