Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Toughening of polylactide by blending with various elastomeric materials
Download
index.pdf
Date
2014
Author
Meyva, Yelda
Metadata
Show full item record
Item Usage Stats
224
views
157
downloads
Cite This
The purpose of the first part of this thesis was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene methyl acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form of 1-5 micron sized round domains in the PLA matrix. Rubber toughening mechanisms of EVA, EMA and EBA-GMA were very effective to improve ductility and toughness of PLA significantly. Depending on the type and content of the ethylene copolymers, the highest increases in % elongation at break, Charpy impact toughness and GIC fracture toughness values of PLA were as much as 160%, 320% and 158%, respectively. Although there were no detrimental effects of using EVA, EMA and EBA-GMA on the thermal properties of PLA, they resulted in certain level of reductions in stiffness, strength and hardness values. The purpose of the second part of thesis was again to improve toughness of inherently very brittle PLA without sacrificing other mechanical and thermal properties, so that PLA could be used also in engineering applications. For this purpose, PLA was blended with two different thermoplastic elastomers; TPU (thermoplastic polyurethane) and BioTPE (biomass based thermoplastic polyester) in various amounts. SEM analysis again indicated that TPU and BioTPE were immiscible forming fine and uniform round domains in the PLA matrix. It was revealed that rubber toughening mechanisms of TPU and BioTPE were much more effective, e.g. using only 10 phr of one of them increased Charpy impact toughness of PLA more than 300%, while increases in KIC and GIC fracture toughness values were as much as 35% and 130%, respectively. Other mechanical tests (tension, flexure, hardness) and thermal analyses (DSC, TGA, DMA) indicated that there was no significant detrimental effects of using 10 phr TPU and BioTPE on the other mechanical and thermal properties of PLA. The purpose of the third part of this thesis was to investigate the effects of using maleic anhydride (MA) compatibilization on the toughness and other properties of PLA blended with TPU and BioTPE. MA grafting on the PLA backbone (PLA-g-MA) was prepared separately by reactive extrusion and added during melt blending of PLA/thermoplastic elastomers. IR spectroscopy revealed that MA graft might interact with the functional groups present in the hard segments of TPU and BioTPE domains via primary chemical interactions, so that higher level of compatibilization could be obtained. SEM studies indicated that PLA-g-MA compatibilization also decreased the size of elastomeric domains leading to higher level of surface area for more interfacial interactions. Toughness tests revealed that Charpy impact toughness and fracture toughness (KIC and GIC) of inherently brittle PLA increased enormously when the blends were compatibilized with PLA-g-MA. For instance, GIC fracture toughness of PLA increased as much as 166%. It was also observed that PLA-g-MA compatibilization resulted in no detrimental effects on the other mechanical and thermal properties of PLA blends.
Subject Keywords
Polylactide.
,
Rubber.
,
Elastomers.
,
Copolymers.
URI
http://etd.lib.metu.edu.tr/upload/12617706/index.pdf
https://hdl.handle.net/11511/23893
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Toughening of Polylactide by Bio-Based and Petroleum-Based Thermoplastic Elastomers
Meyva, Y.; Kaynak, Cevdet (2015-11-01)
The purpose of this study was to improve toughness of inherently very brittle polylactide (PLA) without sacrificing strength and thermal properties, so that biopolymer PLA could be used in engineering applications. For this purpose, PLA was blended with various amounts of two different thermoplastic elastomers; TPU (petroleum-based thermoplastic polyurethane) and TPE (bio-based thermoplastic polyester). Melt blending and specimen shaping were achieved by using a twin-screw extruder and injection molder, res...
Effects of glass fiber content, 3D-printing and weathering on the performance of polylactide
Varsavaş, Sakine Deniz; Kaynak, Cevdet; Department of Metallurgical and Materials Engineering (2017)
The purpose of the first part of this thesis was to investigate how optimum mechanical properties (strength-modulus-toughness) of inherently very brittle polylactide (PLA) could be obtained by reinforcing with E-glass fibers (GF) and blending with thermoplastic polyurethane elastomer (TPU). Composites and blends were compounded by twin-screw extruder melt mixing, while specimens were shaped by injection molding. SEM analyses revealed that 15 wt% GF reinforcements and 10 wt% TPU domains, alone or together, c...
Influences of three different ethylene copolymers on the toughness and other properties of polylactide
MEYVA, YELDA; Kaynak, Cevdet (Informa UK Limited, 2016-01-01)
The aim of this study was to investigate influences of three different ethylene copolymers on the toughness and other properties of very brittle biopolymer PLA (polylactide). For this aim, PLA was melt blended by twin-screw extruder with various amounts of ethylene vinyl acetate (EVA), ethylene-methyl-acrylate (EMA) and ethylene-n-butyl acrylate-glycidyl-methacrylate (EBA-GMA). SEM and DSC analyses indicated that these ethylene copolymers were thermodynamically immiscible with phase separation in the form o...
Pyrolysis mass spectrometric analysis of copolymer of polyacrylonitrile and polythiophene
Oğuz, Gülcan; Hacaloğlu, Jale; Department of Polymer Science and Technology (2004)
In the first part of this work, the structural and thermal characteristics of polyacrylonitrile, polyacrylonitrile films treated under the electrolysis conditions in the absence of thiophene, polythiophene and the mechanical mixture and a conducting copolymer of polyacrylonitrile/polythiophene have been studied by pyrolysis mass spectrometry technique. The thermal degradation of polyacrylonitrile occurs in three steps; evolution of HCN, monomer, low molecular weight oligomers due to random chain cleavages a...
Structural properties of a-Si films and their effect on aluminum induced crystallization
Tankut, Aydin; Karaman, Mehmet; Ozkol, Engin; Canlı, Sedat; Turan, Raşit (2015-10-01)
In this paper, we report the influence of the structural properties of amorphous silicon (a-Si) on its subsequent crystallization behavior via the aluminum induced crystallization (AIC) method. Two distinct a-Si deposition techniques, electron beam evaporation and plasma enhanced chemical vapor deposition (PECVD), are compared for their effect on the overall AIC kinetics as well as the properties of the final poly-crystalline (poly-Si) silicon film. Raman and FTIR spectroscopy results indicate that the PECV...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
Y. Meyva, “Toughening of polylactide by blending with various elastomeric materials,” M.S. - Master of Science, Middle East Technical University, 2014.