Structural properties of ZnO binary alloy nanosystems: molecular-dynamics simulations

Download
2015
Kılıç, Mehmet Emin
ZnO nanostructures revealed novel implementations in optoelectronics, sensors, transducers and biomedical sciences. There are different shapes of ZnO nanostructures such as zero dimensional-0D (quantum dots, nanoparticles), one dimensional-1D (nanorods, nanowires, nanotubes) and two dimensional-2D (nanosheets) and their properties have been experimentally prepared and investigated. Thus, ZnO is one of the richest family of nanostructures among all materials, both in structures and in properties. In this thesis, structural properties of generated 0D (nanoparticles and nanorings), 1D (nanoribbons, nanorods and nanotubes) and 2D nanostructures (nanosheets) under different mechanical processes (tensile strain, compression strain, torsion) have been investigated. Additionally, the defects for nanoribbons and nanosheets have been studied both at 1 and 300 K under the applied tensile strain applications. The nanostructures have been studied both with and without periodic boundary conditions. Moreover, the thermal and structural properties of 0D nanoparticles have been investigated via the nonequilibrated molecular dynamics simulation process by increasing temperatures. Classical molecular dynamics simulations have been performed at 1 and 300 K using an atomistic potential energy function consisting of two body interactions among the atoms. Molecular Dynamics is one of the most promising methods commonly used for investigating the mechanical properties of nanostructures.

Suggestions

Investigation of structural properties of boron carbide nanosystems under mechanical and thermal effects: molecular dynamics simulations
Şimşek, Yusuf; Erkoç, Şakir; Sezgi, Naime Aslı; Department of Micro and Nanotechnology (2014)
Structural properties of various boron-carbide nanosystems with different sizes have been investigated by performing classical molecular dynamics simulation techniques at several temperatures. Studied boron carbide systems are icosahedral nanoribbons and nanosheets, graphene like armchair and zigzag type of monolayer and bilayer boron carbide nanoribbons and nanosheets, armchair and zigzag type of boron carbide nanotubes, cubic form nanorods and nanosheets. Stillinger-Weber potential energy function paramet...
Structural properties of indium phosphide nanorods: molecular dynamics simulations
Nayir, Nadire; TAŞCI, EMRE; Erkoç, Şakir (2016-01-01)
We study the structural properties of the indium phosphide nanorods of different thickness in zinc blende and wurtzite phases by performing classical molecular dynamics simulations using an inter-atomic potential. In addition to different temperatures, the nanorods are also investigated under strain and compression. When the stretch is applied, simulations reveal that the sequence of the irreversible structural transformation for the zinc blende nanorods is zinc blende -> rock salt -> wurtzite and the wurtz...
Structural features and energetics of Znn-mCdm (n=7,8) microclusters and Zn-50, Cd-50, and Zn25Cd25 nanoparticles: Molecular-dynamics simulations
Amirouche, L; Erkoç, Şakir (American Physical Society (APS), 2003-10-01)
The structural features and energetics of Znn−mCdm (n=7,8) microclusters and Zn50, Cd50, and Zn25Cd25 nanoparticles have been investigated by performing molecular-dynamics computer simulations using a recently developed empirical many-body potential-energy function. The most stable structures were found to be compact and three-dimensional for all elemental and mixed clusters. An interesting structural feature of the mixed clusters is that Zn and Cd atoms do not mix in mixed clusters; they come together almo...
Structural Properties of ZnO Nanotubes Under Uniaxial Strain: Molecular Dynamics Simulations
Kilic, Mehmet Emin; Erkoç, Şakir (2013-10-01)
Structural properties of zinc oxide nanotubes with zigzag, armchair and chiral geometries have been investigated by performing classical molecular dynamics simulations. An atomistic potential energy function has been used to represent the interactions among the atoms. Strain has been applied to the generated ZnO nanostructures along their length, which has been realized at two different temperatures, 1 K and 300 K. It has been found that ZnO nanostructures following strain application undergo a structural c...
Experimental characterization of collapse-mode CMUT operation
Oralkan, Omer; Bayram, Barış; Yaralioglu, Goksen G.; Ergun, A. Sanli; Kupnik, Mario; Yeh, David T.; Wygant, Ira O.; Khuri-Yakub, Butrus T. (2006-08-01)
This paper reports on the experimental characterization of collapse-mode operation of capacitive micromachined ultrasonic transducers (CMUTs). CMUTs are conventionally operated by applying a direct current (DC) bias voltage less than the collapse voltage of the membrane, so that the membrane is deflected toward the bottom electrode. In the conventional regime, there is no contact between the membrane and the substrate; the maximum alternating current (AC) displacement occurs at the center of the membrane. I...
Citation Formats
M. E. Kılıç, “Structural properties of ZnO binary alloy nanosystems: molecular-dynamics simulations,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.