Faux Riccati equation techniques for feedback control of nonlinear and time-varying systems

Download
2015
Prach, Anna
Rapid development of nonlinear control theory for application to challenging and complex problems is motivated by the fast technological development and demand for highly accurate control systems. In infinite-horizon nonlinear optimal control the essential difficulty is that no efficient analytical or numerical algorithm is available to derive exact expressions for optimal controls. This work concerns the numerical investigation of faux Riccati equation methods for control of nonlinear and linear time-varying (LTV) systems. These methods are attractive due to their simplicity and potentially wide applicability. Considered methods include state-dependent Riccati equation (SDRE) control and forward-propagating Riccati equation (FPRE) control. In SDRE control the instantaneous dynamics matrix is used within an algebraic Riccati equation solved at each time step. FPRE control solves the differential algebraic Riccati equation forward in time rather than backward in time as in classical optimal control. While applications and theoretical developments of the SDRE technique are widely reflected in the literature, FPRE is a newly developed approach, which is heuristic and suboptimal in the sense that neither stability nor optimal performance is guaranteed. This approach requires development of a theoretical framework that addresses practical aspects of FPRE design, and provides conditions and guidelines for implementation. This work presents the basic properties of the solution of the FPRE for LTI plants in comparison with the solution of the backward-propagating Riccati equation (BPRE), shows the duality between FPRE and BPRE, and investigates stabilizing properties of FPRE. Pareto performance tradeoff curves are used to illustrate the suboptimality of the FPRE as well as the dependence on the initial condition of the Riccati equation. When applied to nonlinear systems, faux Riccati equation techniques entail pseudolinear models of nonlinear plants that use either a state-dependent coefficient (SDC) or the Jacobian of the vector field. To investigate the strengths and weaknesses of SDRE and FPRE methods, this work presents a numerical study of various nonlinear plants under full-state-feedback and output-feedback control. Within the scope of FPRE, an internal model principle is used for command following and disturbance rejection problems for LTV and nonlinear systems. The performance of this approach is investigated numerically by considering the effect of performance weightings, the initial conditions of the difference Riccati equations, plant initial conditions and domain of attraction, and the choice of SDC. Numerical studies include an inverted pendulum, a two-mass system, Mathieu equation, Van der Pol oscillator, ball and beam, rotational- translational actuator, and a fixed-wing aircraft.

Suggestions

Digital controller design for sampled-data nonlinear systems
Üstüntürk, Ahmet; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2012)
In this thesis, digital controller design methods for sampled-data nonlinear systems are considered. Although sampled-data nonlinear control has attracted much attention in recent years, the controller design methods for sampled-data nonlinear systems are still limited. Therefore, a range of controller design methods for sampled-data nonlinear systems are developed such as backstepping, adaptive and robust backstepping, reduced-order observer-based output feedback controller design methods based on the Eule...
Model Updating of a Nonlinear System: Gun Barrel of a Battle Tank
Canbaloglu, Guvenc; Özgüven, Hasan Nevzat (2016-01-28)
Nonlinearities in a structural system make the use of model updating methods developed for linear systems difficult to apply nonlinear systems. If the FRFs of the underlying linear systems in a nonlinear system could be experimentally extracted, then the linear model updating methods could easily be applied to nonlinear systems as well. When there are complex nonlinearities in a structure together with frictional type of nonlinearity, linear FRFs cannot be accurately obtained by using low level forcing. In ...
Integrability of Kersten-Krasil'shchik coupled KdV-mKdV equations: singularity analysis and Lax pair
Karasu, Emine Ayşe; Yurdusen, I (AIP Publishing, 2003-04-01)
The integrability of a coupled KdV-mKdV system is tested by means of singularity analysis. The true Lax pair associated with this system is obtained by the use of prolongation technique. (C) 2003 American Institute of Physics.
A Control System Architecture for Control of Non-Affine in Control, Open-Loop Unstable Underactuated Systems
Marangoz, Alp; Kutay, Ali Türker (2017-07-25)
In this paper, a control system architecture for control of non-affine in control, open-loop unstable underactuated system is discussed. Passivization of the unactuated (internal) system dynamics achieved through perturbation of trajectories of the actuated states, which are calculated through adaptive dynamic inversion technique, based on Tikhonov's theorem. Performance of the controller is shown through simulation of two open-loop unstable and locally uncontrollable example problems.
Structured neural networks for modeling and identification of nonlinear mechanical systems
Kılıç, Ergin; Dölen, Melik; Koku, Ahmet Buğra; Department of Mechanical Engineering (2012)
Most engineering systems are highly nonlinear in nature and thus one could not develop efficient mathematical models for these systems. Artificial neural networks, which are used in estimation, filtering, identification and control in technical literature, are considered as universal modeling and functional approximation tools. Unfortunately, developing a well trained monolithic type neural network (with many free parameters/weights) is known to be a daunting task since the process of loading a specific pat...
Citation Formats
A. Prach, “Faux Riccati equation techniques for feedback control of nonlinear and time-varying systems,” Ph.D. - Doctoral Program, Middle East Technical University, 2015.