Design, control, and guidance of a tactical missile with lateral thrusters

Download
2015
İpek, Fahrettin Kağan
Maneuverability is a key concept for tactical missiles. In this thesis different aerodynamic configurations of a tactical missile is investigated. Effect of fixed wing position on stability and agility is discussed at different phases of the flight. A secondary actuator, lateral thruster system, is introduced. This system employs reaction forces obtained by ejecting high velocity gases at desired times. Unlike aerodynamic fins or thrust vector controlling of the main engine, thruster system control effect is constant at all phases of the flight. This makes it an interesting actuator for low speed conditions when main engine is not vector controlled and aerodynamic fin effectiveness is weak. One peculiarity of the system is that it can only work in on-off fashion; hence thruster modulator is introduced in the controller design to mitigate the nonlinear behavior of the thrusters. Missile initial turnover maneuvers are studied in vertical ground launch and in horizontal airborne launch. Terminal phase guidance is also examined. These scenarios are modeled in a 6 DoF simulation environment and lateral thruster effect is discussed.

Suggestions

Missile guidance with impact angle constraint
Çilek, Barkan; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
Missile flight control systems are the brains of missiles. One key element of a missile FCS is the guidance module. It basically generates the necessary command inputs to the autopilot.Guidance algorithm selection depends on the purpose of the corresponding missile type. In this thesis, missile guidance design problem with impact angle constraint is studied which is the main concern of anti-tank and anti-ship missiles. Different algorithms existing in the literature have been investigated using various anal...
External configuration design and aerodynamic optimization of modular guided munitions
Gün, Mert; Sezer Uzol, Nilay; Department of Aerospace Engineering (2019)
Guided munitions, also known as gliding missiles, are not stand alone systems; rather, they are converted from a dummy body with the help of guidance kits. Guided munitions are used in great number during military operations, unlike air-to-air or cruise missiles. Guided munitions can be classified in two main sub-categories. First group provides guidance and stability with use of strakes. These type of missiles used for relatively short ranges. Second group has wings instead of strakes and effective in larg...
Design of a grid fin aerodynamic control device for transonic flight regime
Dikbaş, Erdem; Sert, Cüneyt; Baran, Özgür Uğraş; Department of Mechanical Engineering (2015)
Grid fins is unconventional control devices and they are used for aerodynamic control of various types of missiles. Low hinge moment requirement and superior packaging possibilities make grid fins attractive when compared to conventional planar fins. However, design of grid fins is more involved when transonic flight regime is considered. The reason for this is high drag force encountered by the grid fin. The purpose of the thesis is to overcome this drawback and to define a proper design methodology for tr...
Sliding mode guidance of an air-to-air missile
Ulu, Muharrem; Leblebicioğlu, Mehmet Kemal; Department of Electrical and Electronics Engineering (2013)
Pursuit of a highly maneuverable aircraft by an air-to-air missile requires a solution to a challenging guidance and control problem. Precision is the most important need for these missiles. Appropriate guidance commands that are generated by the guidance method and an autopilot that can fulfil the agility needs of such a missile are the keys of minimizing the distance between the missile and the target and a successful interception. In this thesis, autopilot and guidance method design of an air-to-air miss...
Short range thrusting projectile tracking
Bilgin, Ozan Özgün; Demirekler, Mübeccel; Department of Electrical and Electronics Engineering (2012)
Short range thrusting projectiles are one of the various threats against armored vehicles and helicopters on the battlefield. Developing a countermeasure for this kind of projectiles is very crucial since they are vast in number and easy to operate on the battlefield. A countermeasure may consist of fire point prediction of the projectile and attack the launcher of it, or it may be the impact point prediction of the projectile and apply a hard-kill counter measure on its way to the ally target. For both of ...
Citation Formats
F. K. İpek, “Design, control, and guidance of a tactical missile with lateral thrusters,” M.S. - Master of Science, Middle East Technical University, 2015.