Sliding mode guidance of an air-to-air missile

Ulu, Muharrem
Pursuit of a highly maneuverable aircraft by an air-to-air missile requires a solution to a challenging guidance and control problem. Precision is the most important need for these missiles. Appropriate guidance commands that are generated by the guidance method and an autopilot that can fulfil the agility needs of such a missile are the keys of minimizing the distance between the missile and the target and a successful interception. In this thesis, autopilot and guidance method design of an air-to-air missile(AAM) that has maximum 100 seconds time of flight is studied. As the first step, nonlinear 6 degrees-of-freedom (6DOF) mathematical model of the missile is derived by using the equations of motion with aerodynamic coefficients found by Missile Datcom program. Mathematical model is linearized around chosen flight conditions to design an autopilot. In this thesis, the guidance problem is handled by using first and second order sliding mode control and these guidance rules are compared for different interception scenarios.


Missile guidance with impact angle constraint
Çilek, Barkan; Kutay, Ali Türker; Department of Aerospace Engineering (2014)
Missile flight control systems are the brains of missiles. One key element of a missile FCS is the guidance module. It basically generates the necessary command inputs to the autopilot.Guidance algorithm selection depends on the purpose of the corresponding missile type. In this thesis, missile guidance design problem with impact angle constraint is studied which is the main concern of anti-tank and anti-ship missiles. Different algorithms existing in the literature have been investigated using various anal...
Dynamic modeling and control of a hybrid fin actuation system for an air-to-air missile
Çelik, Tayfun; Ciğeroğlu, Ender; Yazıcıoğlu, Yiğit; Department of Mechanical Engineering (2014)
Air-to-air missiles require high maneuverability. In order to obtain high maneuverability, hybrid fin actuation systems are used. In this study, a hybrid fin actuation system which is composed of aerodynamic control surfaces and thrust vector control is designed. Both aerodynamic and thrust vector control types are explained and the most suitable pair is determined for air-to-air missile. Then, the designed system is physically constructed and system identification procedure is performed. After that three d...
Missile autopilot design by projective control theory
Doruk, Reşat Özgür; Kocaoğlan, Erol; Department of Electrical and Electronics Engineering (2003)
In this thesis, autopilots are developed for missiles with moderate dynamics and stationary targets. The aim is to use the designs in real applications. Since the real missile model is nonlinear, a linearization process is required to get use of systematic linear controller design techniques. In the scope of this thesis, the linear quadratic full state feedback approach is applied for developing missile autopilots. However, the limitations of measurement systems on the missiles restrict the availability of ...
Fuzzy logic guidance system design for guided missiles
Vural, A. Özgür; Özgören, Mustafa Kemal; Merttopçuoğlu, Osman; Department of Mechanical Engineering (2003)
This thesis involves modeling, guidance, control, and flight simulations of a canard controlled guided missile. The autopilot is designed by a pole placement technique. Designed autopilot is used with the guidance systems considered in the thesis. Five different guidance methods are applied in the thesis, one of which is the famous proportional navigation guidance. The other four guidance methods are different fuzzy logic guidance systems designed considering different types of guidance inputs. Simulations ...
Adaptive control of guided missiles
Tiryaki Kutluay, Kadriye; Yavrucuk, İlkay; Department of Aerospace Engineering (2011)
This thesis presents applications and an analysis of various adaptive control augmentation schemes to various baseline flight control systems of an air to ground guided missile. The missile model used in this research has aerodynamic control surfaces on its tail section. The missile is desired to make skid to turn maneuvers by following acceleration commands in the pitch and yaw axis, and by keeping zero roll attitude. First, a linear quadratic regulator baseline autopilot is designed for the control of the...
Citation Formats
M. Ulu, “Sliding mode guidance of an air-to-air missile,” M.S. - Master of Science, Middle East Technical University, 2013.