Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Design of a modular orthopedic implant
Download
index.pdf
Date
2015
Author
Erkan, Onur Mert
Metadata
Show full item record
Item Usage Stats
248
views
96
downloads
Cite This
Bone fracture due to trauma and bone defects by birth are very common in orthopedics, making their treatment crucial. In this study, a novel design to treat upper arm fractures is introduced and assessed mechanically. The design offers medical doctors longitudinal and angular flexibility when compared to widely used orthopedic plates. Hence the new design covers a variety of fracture types. Earlier conceptual designs are reviewed to demonstrate the progress of design. Mechanical performance of the final design is evaluated using analytic methods, finite element analysis and physical experiments. Assessment was based on a safe axial external load of 15 kgf suggested by the medical doctors and focused on the rigidity problems caused by modularity, along with strength concerns. It is proven in this study that the novel design can fix the fracture successfully, even under the aforementioned external load.
Subject Keywords
Orthopedic implants.
,
Implants, Artificial.
,
Biomedical materials.
,
Bones
URI
http://etd.lib.metu.edu.tr/upload/12619044/index.pdf
https://hdl.handle.net/11511/24925
Collections
Graduate School of Natural and Applied Sciences, Thesis
Suggestions
OpenMETU
Core
Mechanical design and analysis of a novel fixation device for human bone fractures
Yenigün, Çağrı; Tönük, Ergin; Oğuz, Erbil; Department of Biomedical Engineering (2016)
Fixation of bone fractures over a desired time period is one of the most important requirement for their healing processes. Fracture fixation devices are designed to satisfy particular requirements for different types of bone fractures. Conventional and locking plates, intramedullary rods and screws of trauma surgery, and polyaxial screws, connectors and rods of spinal surgery are the examples of contemporary implants for varying bones and their fractures. The mentioned fixation system is inspired from spin...
Development of a siRNA delivery system for the treatment of osteoporosis
Sezlev Bilecen, Deniz; Hasırcı, Vasıf Nejat; Uludağ, Hasan; Department of Biotechnology (2018)
Osteoporosis, the most common disease of bone, is a skeletal disorder associated with low bone mass, increase in bone fragility and in susceptibility to fractures. The high bone resorption rate is shown to be due to increased number and activity of the osteoclasts. Receptor Activator of Nuclear Factor kappa B (RANK)/ Receptor Activator of Nuclear Factor kappa B Ligand (RANKL) system plays a crucial role in osteoclast differentiation and bone remodeling. RANKL participates in differentiation and activation o...
Etiology of senile osteoporosis - A hypothesis
Atik, O. Sahap; Uslu, M. Murad; Eksioglu, Fatih; Satana, Tolgay (Ovid Technologies (Wolters Kluwer Health), 2006-02-01)
Osteoporosis is a major health problem characterized by compromised bone strength predisposing patients to an increased risk of fracture. It may cause morbidity and mortality in elderly men and women. The etiologic factors that lead to senile osteoporosis still are unclear.
Improvement of bioactivity with dual bioceramic incorporation to nanofibrous PCL scaffolds
Altunordu, Gercem; Tezcaner, Ayşen; Evis, Zafer; Keskin, Dilek (2023-03-01)
Bone tissue injuries, diseases or related clinical interventions require bone tissue engineering (BTE) approaches for regeneration of large bone defects, especially for compromised situations. Most BTE applications in literature focused on composites of polymers with a single type of bioceramic. However, native bone matrix has various inorganic components. Accordingly, this study aimed to investigate the use of dual bioceramics in BTE scaffolds prepared by wet-electrospinning of Poly-caprolactone (PCL) and ...
Local delivery of bioactive agents for bone tissue engineering
Alissa Alam, Hani; Keskin, Dilek; Özen, Can; Department of Biotechnology (2017)
Many cases of bone defects require bone grafts addition into the body. Bone tissue substitutes have more advantages over other bone grafts because of low infection risk and abundance of materials. Local delivery of drugs or bioactive agents can help in these diseases’ treatments and bone growth overall while avoiding side effects or drug interference. To accelerate local bone regrowth, a research about developing a controlled local release system of bioactive agents to bone cells was conducted in this study...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
O. M. Erkan, “Design of a modular orthopedic implant,” M.S. - Master of Science, Middle East Technical University, 2015.