Numerical analysis of ablation process on a two dimensional external surface

2008-01-01
Aykan, Fatma Serap
Dursunkaya, Zafer
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method considers the whole domain as one continuous computational domain, eliminating the necessity to check the starting and ending positions of the decomposition zone. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers that the ablation process takes place in a finite zone. Pyrolysis gases are assumed to behave as ideal gas and the pressure Is taken as a constant on the whole physical domain. The formulation for one-dimensional case is validated by experimental results obtained from literature. The two-dimensional case in a Cartesian geometry is formulated and an algebraic transformation is used to normalize the region in both directions and transform at same time into a square computational domain in order to get a solution for variable thickness domains. The formulation for two-dimensional case is revised for the cylindrical coordinates with a finite length in the axial direction. To solve geometries where the outer surface deviates from cylindrical, the formulation is scaled and transformed into a non-dimensional square computational domain. In all problems, the radiation, constant heat flux and adiabatic wall boundary conditions exist and the entire domain is initially at a constant temperature.
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY

Suggestions

Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer; Department of Mechanical Engineering (2005)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method is applied to both rectangular and cylindrical coordinate systems, where rectangular coordinate system is used for comparison with results available in literature. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers tha...
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Analytical solutions to orthotropic variable thickness disk problems
Eraslan, Ahmet Nedim; Varlı, Ekin (2016-01-01)
An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The ...
Electrical impedance tomography using induced and injected currents
Gençer, Nevzat Güneri; Kuzuoğlu, Mustafa (IOP Publishing, 1992-01-01)
A two-dimensional forward problem formulation is introduced for electrical impedance tomography (EIT) using induced currents. The forward problem is linearised around a certain resistivity distribution and the inverse problem is formulated as a solution of a linear system of equations. Sensitivity of boundary measurements to resistivity variations arc analysed for spatially uniform, linear and quadratic fields. The formulation, however, is suitable for studying the effects of a general magnetic field applie...
Numerical and experimental analysis for comparison of square, cylindrical and plate fin arrays in external flow
İnci, Aykut Barış; Bayer, Özgür; Department of Mechanical Engineering (2018)
Geometrical optimization of square, cylindrical and plate fins for heat transfer augmentation is numerically performed in the external flow. Heat transfer performance of fins with different profiles are compared with same Reynolds number. The relation between the thermal characteristic of fins and boundary conditions like free-stream velocity and heat input are investigated. Experimental studies are performed using manufacturable fins to validate numerical model. Heat transfer correlations are derived in or...
Citation Formats
F. S. Aykan and Z. Dursunkaya, “Numerical analysis of ablation process on a two dimensional external surface,” ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY, pp. 43–49, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53331.