Show/Hide Menu
Hide/Show Apps
Logout
Türkçe
Türkçe
Search
Search
Login
Login
OpenMETU
OpenMETU
About
About
Open Science Policy
Open Science Policy
Open Access Guideline
Open Access Guideline
Postgraduate Thesis Guideline
Postgraduate Thesis Guideline
Communities & Collections
Communities & Collections
Help
Help
Frequently Asked Questions
Frequently Asked Questions
Guides
Guides
Thesis submission
Thesis submission
MS without thesis term project submission
MS without thesis term project submission
Publication submission with DOI
Publication submission with DOI
Publication submission
Publication submission
Supporting Information
Supporting Information
General Information
General Information
Copyright, Embargo and License
Copyright, Embargo and License
Contact us
Contact us
Numerical analysis of ablation process on a two dimensional external surface
Date
2008-01-01
Author
Aykan, Fatma Serap
Dursunkaya, Zafer
Metadata
Show full item record
This work is licensed under a
Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License
.
Item Usage Stats
218
views
0
downloads
Cite This
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method considers the whole domain as one continuous computational domain, eliminating the necessity to check the starting and ending positions of the decomposition zone. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers that the ablation process takes place in a finite zone. Pyrolysis gases are assumed to behave as ideal gas and the pressure Is taken as a constant on the whole physical domain. The formulation for one-dimensional case is validated by experimental results obtained from literature. The two-dimensional case in a Cartesian geometry is formulated and an algebraic transformation is used to normalize the region in both directions and transform at same time into a square computational domain in order to get a solution for variable thickness domains. The formulation for two-dimensional case is revised for the cylindrical coordinates with a finite length in the axial direction. To solve geometries where the outer surface deviates from cylindrical, the formulation is scaled and transformed into a non-dimensional square computational domain. In all problems, the radiation, constant heat flux and adiabatic wall boundary conditions exist and the entire domain is initially at a constant temperature.
Subject Keywords
Thermal protection
,
2-D ablation
,
Composite decomposition
,
Arrhenius equation
URI
https://hdl.handle.net/11511/53331
Journal
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY
Collections
Department of Mechanical Engineering, Article
Suggestions
OpenMETU
Core
Numerical analysis of ablation process on a two dimensional external surface
Aykan, Fatma Serap; Dursunkaya, Zafer; Department of Mechanical Engineering (2005)
The thermal response analysis of an ablative material on a two dimensional external surface is performed. The method is applied to both rectangular and cylindrical coordinate systems, where rectangular coordinate system is used for comparison with results available in literature. The current study solves the decomposition of the material at high temperatures by using the nth order Arrhenius equation but excludes the removal of char from the surface due to mechanical erosion or phase change and considers tha...
Numerical investigation of coupled heat and mass transfer inside the adsorbent bed of an adsorption cooling unit
Solmus, Ismail; Rees, D. Andrew S.; Yamali, Cemil; Baker, Derek Keıth; KAFTANOĞLU, BİLGİN (2012-05-01)
In this study, the influence of several design parameters on the transient distributions of temperature, pressure and amount adsorbed in the radial direction of a cylindrical adsorbent bed of an adsorption cooling unit using silica gel/water have been investigated numerically. For this purpose, a transient one-dimensional local thermal non-equilibrium model that accounts for both internal and external mass transfer resistances has been developed using the local volume averaging method. For the conditions in...
Numerical investigation of stiffened composite panel into buckling and post buckling under combined loading
Akay, Erkan; Yaman, Yavuz; Department of Aerospace Engineering (2015)
This thesis presents the investigation of buckling and post buckling behaviour of stiffened thin walled laminated composite aerospace structures subjected to combined in-plane axial and shear loadings. Due to the fact that the state of stress developing especially in the post-buckling stage is quite complicated under the combined loading, the necessary computational model is usually based on Finite Element Modelling (FEM). In this study, after verifying the FEM methodology and completing the sensitivity stu...
Analytical solutions to orthotropic variable thickness disk problems
Eraslan, Ahmet Nedim; Varlı, Ekin (2016-01-01)
An analytical model is developed to estimate the mechanical response of nonisothermal, orthotropic, variable thickness disks under a variety of boundary conditions. Combining basic mechanical equations of disk geometry with the equations of orthotropic material, the elastic equation of the disk is obtained. This equation is transformed into a standard hypergeometric differential equation by means of a suitable transformation. An analytical solution is then obtained in terms of hypergeometric functions. The ...
Gradient-based optimization of micro-scale pressurized volumetric receiver geometry and flow rate
Akba, Tufan; Baker, Derek Keıth; Mengüç, M. Pınar (2023-02-01)
This study focuses on the design optimization of a micro-scale pressurized volumetric receiver by changing geometry and flow rate constrained by the volume, outlet air temperature, and outer surface temperature. The pressurized volumetric receiver model is replicated from an existing model, which assumes constant air pressure and neglects the convection loss from the cavity. The existing model is revised from a solver to a design optimizer. The replicated model is restructured using OpenMDAO (Open-source Mu...
Citation Formats
IEEE
ACM
APA
CHICAGO
MLA
BibTeX
F. S. Aykan and Z. Dursunkaya, “Numerical analysis of ablation process on a two dimensional external surface,”
ISI BILIMI VE TEKNIGI DERGISI-JOURNAL OF THERMAL SCIENCE AND TECHNOLOGY
, pp. 43–49, 2008, Accessed: 00, 2020. [Online]. Available: https://hdl.handle.net/11511/53331.